Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development

F. Noto[1,2], V. Bellini[1,2], E. Cisbani[3,4], V. De Smet[1,5], F. Librizzi[6], F. Mammoliti[1,2], and C. Sutera[6]
[1]Dipart. di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]INFN – Sezione di Catania, Catania, Italy
[3]IINFN – Sezione di Roma - Sanità Group, Roma, Italy
[4]Italian National Institute of Health, Roma, Italy
[5]Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[6]NFN - Sezione di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm2 without noticeable aging and to provide the sub millimeter resolution on working chambers up to 45x45 cm2. A new GEM based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

A. Travis[1], K. Ekici[1], J. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model’s domain consists of a three-dimensional fuel plate and a two-dimensional coolant channel slice. In simplifying the coolant channel, the computational cost and solution time are both ...

Two Dimensional Blood Shear Modeling in a Blood Cooling Catheter

R. Sikorski[1], B. Chapman[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

A CFD cardiac catheter model was developed to determine the potential for blood hemolysis during administration of local therapeutic hypothermia using a CoolGuide catheter. In vivo animal studies have shown that mild hypothermia may reduce reperfusion injury often associated with heart attack. The CoolGuide Catheter System (CCS) delivers rapid local cooling through a cardiac catheter, reducing ...

Calibration of MHD Flow Meter using COMSOL Multiphysics

S. Sahu[1], R. P .Bhattachryay[1], E. R. Kumar[1]
[1]Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, India.

There is limited option for non-intrusive flow measurement of liquid metals at high temperature. Liquid metal flowing in a conduit along with the transverse magnetic field induces emf in the liquid metal. The emf developed; which has linear dependency on flow velocity; can be used for flow velocity estimation. In case of conducting conduit the emf can be measured at the conduit wall. The main ...

Investigating the Performance of Mechanically Ventilated Double-Skin Facades with Solar Control Devices in the Main Cavity - new

C. G. Galante[1]
[1]Newtecnic Ltd, London, England, UK

The use of ventilated facades may reduce the cooling and heating energy demands of the building. Double-skin facades (DSFs) belong to the wider group of ventilated facades and currently represent one of the most interesting and studied facade systems. The purpose of this study is to investigate the thermal behaviour and performance of a DSF being designed for a real project in the Middle East ...

Simulation of a Nozzle in a Borehole

E. Holzbecher [1], F. Sun [2],
[1] German University of Technology in Oman, Muscat, Oman, Germany
[2] Georg-August-Universität, Göttingen, Germany

In boreholes nozzles have to be found advantageous to increase the infiltration rate of water into the subsurface ground. Studies and practice in the field shows that the infiltration of water into permeable aquifers can be improved, if the flow in the borehole is modified. Due to the nozzle the flow regime turns from linear to turbulent. CFD studies help to understand the physics of the ...

Numerical Solutions for the Lévêque Problem of Boundary Layer  Mass or Heat Flux

E. Holzbecher
Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany

The Lévêque problem is an idealized simple situation concerning the influence of the boundary on the distribution of temperature or mass in Hagen-Poiseuille flow. Here, the performance of numerical solutions is examined for a range of Péclet numbers, spanning 11 orders of magnitude. We examine the Sherwood, resp. Nusselt numbers and confirm the cubic square rule for high flow ...

Gravitational Collapse of Rectangular Granular Piles

M.H. Babaei[1], T. Dabros[2], S.B. Savage[3]
[1]Ocean, Coastal, and River Engineering, National Research Council of Canada, Ottawa, ON, Canada
[2]Natural Resources Canada, CanmetENERGY, Devon, AB, Canada
[3]Department of Civil Engineering & Applied Mechanics, McGill University, Montreal, QC, Canada

In this study, the dam-break type two-dimensional gravitational collapse of rectangular granular piles in air was numerically studied. The frictional behavior of the material was based on the von-Mises model with the Mohr-Coulomb yield surface leading to pressure and strain-rate-dependence of shear viscosity. The governing equations of the problem were solved using the COMSOL two-phase flow CFD ...

Modeling Void Drainage with Thin Film Dynamics

J.J. Gangloff Jr.[1], W.R. Hwang[2], S.G. Advani[1]
[1]Center for Composite Materials, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]School of Mechanical Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea

Voids in composite materials can lead to degraded structural performance. The following is a study of voids or bubbles in uncured viscous polymer resin during composites processing. The goal is to determine if voids can successfully migrate towards vacuum pathways, coalesce with the pathways, and escape. Inherent to the coalescence process is the drainage and rupture of the resin thin film ...