Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Modified Koutecký-Levich Equation for the Analysis of Electrochemical Flow Cells with Complex Geometries

S. A. Tschupp [1], S. E. Temmel [1], N. Poyatos Salguero [1], J. Herranz [1], T.J. Schmidt [2],
[1] Paul Scherrer Institut, Villigen, Switzerland
[2] ETH Zürich, Zürich, Switzerland

Electrochemical flow cells have found widespread use in analytical chemistry due to their short response time, high sensitivity and selectivity. The geometrical flexibility and therefore, the ease of coupling the electrochemical to other experimental techniques has attracted considerable interest for applications in electrocatalytic research as well. Such coupling is far more cumbersome with the ...

CFD Investigation of Cross Bubbly Flow through a Bubble Column with Rectangular Geometry

N. M. Musa [1], D. Kuvshinov [1], P. Rubini [1],
[1] The University of Hull, Hull, East Yorkshire, United Kingdom

Impact of human activities on the climate is evident, and the recent anthropogenic production and discharge of greenhouse gases into the atmosphere is highest in history. The current climate change have had worldwide influence on human and natural systems for example; global warming, melting of ice and snow, and rise in sea level etc. (AGECC 2010, Council 2013, IPCC, 2014). Increase in the ...

MCA 动脉瘤血流动力学分析

刘孟杰 [1], 付芳芳 [2], 李萌 [1]
[1] 郑州大学,郑州,河南,中国
[2] 郑州大学附属省人民医院,郑州,河南,中国

动脉瘤破裂是引起蛛网膜下腔出血的一种主要原因。结合 COMSOL Multiphysics® 灵活的几何建模特性以及强大的流体仿真求解能力,本文分别对两组不同大小关系的 MCA 动脉瘤理论模型进行了仿真建模分析。通过模拟分析,获得了动脉瘤球囊体长度和宽度与动脉瘤基底宽度不同比例条件下的动脉瘤速度、压力、壁面切应力(WSS)等参数的变化规律,分析了几何形态与动力学参数之间的关系。模拟结果显示:1、宽颈动脉瘤,瘤体内部旋流强度较之窄颈动脉瘤更强,中心区流速更低,更有利于形成血栓而且顶点处压力更大,更易破裂。2、增大动脉瘤宽度与基底直径的比值,顶点处 WSS 呈非线性增长,但最大值低于 WSS 安全范围的下限值,破裂危险性依然很高;3、动脉瘤宽度与基底直径不同比例下的最大的 WSS 均是主要集中在动脉瘤与载瘤血管结合处(第一剪应力集中区),对血管壁生物组织力学特性影响严重;WSS ...

Deformation Behavior Of A Liquid Droplet Impacting A Solid Surface

S. Oukach[1], M. Elganaoui[1], B. Pateyron[1], and H. Hamdi[2]
[1]Laboratoire des Sciences des Procèdes Céramiques et de Traitements de Surface SPCTS, Limoges, France
[2]Laboratoire de Mécanique des Fluides et Energétique LMFE, Marrakech, Morocco

The quality of coatings obtained by means of thermal spraying depends strongly on the mechanism of the interaction between the molten droplets and the surface to be covered. The aim of the present study is to simulate the impact of a droplet onto a substrate, in order to have a good understanding of the dynamics of droplets impact. In this study, the process of droplet spreading is described; ...

Numerical Simulation of Oil Recovery by Polymer Injection using COMSOL

J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal, Germany

In this paper we used COMSOL Multiphysics to model basic physico-chemical effects relevant in polymer enhanced oil recovery (EOR) such as non-Newtonian rheology of the displacing phase, permeability reduction, adsorption and salinity effects. COMSOL\'s PDE interface as well as Species Transport in Porous Media interface was used for solving the underlying equations. The validity of the ...

Heat-Accumulation Stoves: Numerical Simulations of Two Twisted Conduit Configurations

D. Rossi[1], P. Scotton[2], M. Barberi[3]
[1]Università degli Studi di Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[2]Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[3]Barberi Stufe LTD, Trento, TN, Italy

An important part of the society considers an increased share of renewable energies as an integral part of a strategy towards a sustainable future. As far as heat supply is concerned, this can be achieved using solar thermal collectors, borehole heat exchangers or trough the combustion of biomass. This article shows two applications of two configurations of twisted conduit inside the external ...

Quantitative Assessment of Secondary Flows of Single-phase Fluid through Pipe Bends

Z. Kaldy [1], O. Ayala [1],
[1] Department of Engineering Technology, Old Dominion University, Norfolk, VA, USA

Single-phase fluid flow was simulated passing through various three dimensional pipe elbows. The simulations varied by Reynolds number, curvature ratios, and sweep angles and were all conducted using the k-ε model available in COMSOL Multiphysics® software. The intent of this research was to qualitatively assess the flow characteristics under several different conditions. Many similarities were ...

A Comparison of the Continuous and Discrete Approach for Liquid Manipulation

S. F. Azam [1], G. Cathcart[1],
[1] RCAST, The University of Tokyo, Tokyo, Japan

The objective of this paper is to achieve a complete and rapid efficient mixing of numerous sample in micro-scale devices of microfluidic system. The principle of microfluidics is extensively used in a number of fields such as biomedical, healthcare, biochemical, drug research and other applications. These microfluidic devices with mathematical simulations are appropriately utilized in ...

Optimization of Flow Distribution in the Feed Sparger of a Steam Drum

P. Goyal[1], A. Dutta[1], and A. K. Ghosh[1]
[1] Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Steam drums of a nuclear power plant separate steam from the steam water mixture and sub cooled incoming feed water returns to the reactor. The entire feed water flow is delivered to the steam drum through the feed water sparger. The feed water sparger is provided with number of inverted ‘j’ type lateral tubes to  distribute the feed water in the drum for proper mixing with the separated ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...