Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelagem Computacional de Difusores para Microbombas

A. G. S. Barreto Neto [1], A. M. N. Lima [2], C. S. Moreira [1],
[1] Instituto Federal de Ciência e Tecnologia - IFPB, João Pessoa, PB, Brasil
[2] Universidade Federal de Campina Grande - UFCG, Campina Grande, PB, Brasil

Este trabalho trata do dimensionamento da estrutura bocal/difusor utilizando a simulação computacional com fronteira móvel. Esse tipo de simulação contempla toda estrutura da bomba, isto é, câmara de bombeamento, difusor e área de dispersão de fluxo, de modo a contabilizar o refluxo em função da estrutura, possibilitando um projeto mais realísticos da estrutura.

Performance Prediction of Eddy Current Flowmeter for Sodium

P. Sharma[1], S. K. Dash[1], B. K. Nashine[1], S. S. Kumar[1], R. Veerasamy[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu

Sodium is used as a coolant in Fast Breeder Reactors. Eddy Current Flowmeter (ECFM) is used for measurement of sodium flow in the primary pump and at the outlet of the subassemblies. Eddy Current Flowmeter (ECFM) works on the principle of change in the magnetic field profile due to induced eddy currents as a result of sodium flow. It consists of a central primary winding, energized from an A.C. ...

Modeling Contact Line Dynamics in Evaporating Menisci

J. Plawsky[1], A. Chatterjee[1], and P.C. Wayner Jr.[1]
[1]Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA

The Constrained Vapor Bubble is a fundamental fluid mechanics experiment that is scheduled to run aboard the International Space Station starting in August 2009. The experiment is focused on looking at evaporation and condensation processes at the contact line, where vapor, liquid and solid meet. Our goal is to understand how processes that occur on the macroscale affect the transport processes ...

Passive Cooling of Power Electronics: Heat in the Box

M. Berger[1], W. Schernus[1]
[1]West Coast University of Applied Sciences, Heide, Germany

Results presented are a contribution to the design of a 5kW-DC-AC-converter for applications in forklifts. The device is located in a closed environment and entirely operated with passive cooling. Due to concurrent engineering approach and environmental conditions correct prediction of absolute temperature values by simulation was crucial. Heat sinks have been modeled properly and a thermal ...

Turbulent Bounded Flows for Oil & Gas Industry with COMSOL CFD Module

A. Fadel[1], G. Fontana[1]
[1]Isoil Impianti, Albano S. Alessandro, Italy

Industrial applications of fluid mechanics can require to satisfy necessities as diverse as legal norms, optimization requirements and manufacturing constraints. Therefore a Computational Fluid Mechanics software often becomes a must in the development of new devices or the improvement of older ones. Besides the legalistic aspect (such as the European Pressure Equipment Directive), several steps ...

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt (flux) in order to improve the transport of magnesium vapor out of the flux and achieve chemical homogeneity in ...

Multiphysics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

K. Daneshvar[1], A. Fantino[1], C. Cristiani[1], G. Dotelli[1], R. Pelosato[1], M. Santarelli[2]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
[2]Politecnico di Torino, Dipartimento di Energetica, Torino, Italy

A 2D isothermal axisymmetric model of an anode-supported Solid Oxide Fuel Cell (SOFC) has been developed. Also a parametric analysis to find the effect of important parameters on the cell performance has been done. This simulation has been carried out at 1 atm and 1073 K. The PEN materials are traditional ones: Ni-YSZ/YSZ/LSM-YSZ as anode, electrolyte and cathode respectively.The developed ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Modeling Ferrofluid Flow in an Annular Gap Moving with Reciprocating Shaft

Y. He[1], R. Nilssen[1]
[1]Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Ferrofluids have been successfully used in the seals for rotary shafts, but few studies focus on the reciprocating motion seals. Since the completely different operational regimes, previous experiences on the rotary motions could not be directly applied on the cases for reciprocating shafts. In this study, we present a simplified model to describe the process that a shaft linearly moving in a ...