Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Flow of Dry Foam in a Pipe

M. Divakaran[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Due to the coupling of foam flow with foam generation step, the earlier studies on foam flow have not led to consistent results. An increase in flow rate to obtain ?P vs. Q data changes the foam under investigation itself. The controlled experiments carried out earlier in our group show that ?P increases with flow rate as Q^2/3, a weaker dependence than that known for laminar flow or plug flow ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

Coupled Palaehydrogeological Microbial and Geochemical Reactive Transport Model of the Olkiluoto Site (Finland)

P. Trinchero[1], M. Luna[1], J. Molinero[1], G. Román-Ross[1], F. Maia[1], A. Nardi[1], J. Löfman[2], P. Pitkänen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Finland
[3]Posiva Oy, Olkiluoto, Finland

Olkiluoto at Eurajoki has been selected as the final repository site for spent nuclear waste in Finland. This area has been affected, at regional scale, by land-uplift processes related to the ice withdrawal. These events have resulted in a complex and stratified heterogeneous hydrochemical system. The objective of this work was to develop a robust paleohydrogeological reactive transport (PRT) ...

Modeling Maillard Reaction and Thermal Transformations During Bread Baking

D. Papasidero[1], F. Manenti[1]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Milano, Italy

One big challenge for the food industry is to predict and optimize flavors. The Maillard reaction occurs in food matrices containing carbohydrates and proteins under specific operating conditions. The presented research couples thermal and kinetic modeling to the bread baking process, an ideal field to study this complex set of reactions responsible for many bread flavors. The thermal model ...

Numerical Investigation for the Effect of Guide Panel on Heat Transfer from Steel Containment

Priyanshu Goyal[1], I. Thangamani[1], V. Verma[1], V.M. Shanware[1], R. K. Singh[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

In a nuclear reactor, the containment is the last barrier for the release of radioactivity during severe accident conditions. Containment material can be concrete or steel or steel-lined concrete. Steel containments have a high load bearing capacity and a high degree of leak tightness at higher pressures. In case of a severe accident, heat can be removed from the containment by a guide panel, ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

Investigation of Mean-Flow Effects on Tubular Combustion Chamber Thermoacoustics Using a Burner Transfer Matrix Approach - new

A. Andreini[1], B. Facchini[1], A. Innocenti[1], D. Pampaloni[1]
[1]University of Florence, Florence, Italy

The paper presents a methodology to account for local mean-flow effects on thermo-acoustic instabilities to improve typical calculations performed under the zero-Mach number assumption. A 3D FEM model of a simplified combustor is solved with COMSOL Multiphysics® Pressure Acoustics interface. The Helmholtz equation is used to model the combustor and the classical k-τ model for the Flame Transfer ...

Multiphysics Model for Breakup of Charged Liquid Droplets in Electric Fields

S. Chaudhuri [1], W. Du [1],
[1] University of Illinois at Urbana-Champaign, Champaign, IL, USA

Predicting and controlling the formation of droplets from a liquid jet is a critical problem in a variety of applications ranging from fuel injection to paint sprays. It is known that liquid droplets subjected to an electric field acquire a net electrostatic charge via induction, and that the magnitude of this charge depends on the conductivity of the liquid and the size of the droplet [1]. When ...

Thermo-fluid Dynamics Modelling of Hydrogen Absorption and Desorption in a LaNi4.8Al0.2 Hydride Bed

D. Baldissin[1] and D. Lombardo[1]
[1]Compumat S.r.l., Torino, Italy

A two-dimensional mathematical model for the absorption and desorption of H2 in LaNi4.8Al0.2 was developed and experimentally validated. The model is composed of an energy balance, a mass balance and a momentum balance. These differential equations are numerically solved by means of the finite element method using the software COMSOL Multiphysics®. From a comparison between theoretical ...

Deep Desulfurization of Diesel Using a Single-Phase Micro-Reactor

G. Jovonavic[1], J. Jones[1], and A. Yokochi[1]
[1]School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA

This paper describes the benefits of computational fluid dynamics in the development of a microreactor used in the desulfurization of aromatic compounds. It is crucial to verify diffusion and extinction coefficients to ensure accurate simulation results prior to experiments. COMSOL Multiphysics was used to model the behavior of all of the possible species present and reactions that may occur.