Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Comparison of Different Passive Oil-Water Mixing Schemes in a Flow Loop - new

A. Chaudhuri[1]
[1]Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, USA

Oil and water are immiscible fluids and they tend to separate very easily when introduced into a flow stream from two different sources in a flow loop. This model studies the development of mixture volume fraction in an oil-water-flow loop with 3 different passive mixing schemes: (i) blind-T, (ii) check valve, and (iii) static mixer. Each device produces different levels of mixture homogeneity ...

Numerical Simulation of Evaporation Processes in Electron Beam Welding - new

E. Salomatova[1], D. Trushnikov[1], V. Belenkiy[1], V. Tsaplin[1]
[1]Perm National Research Polytechnic University, Perm, Russia

In this paper describes an original method for indirect measurement of the vapor pressure and temperature in the keyhole in electron beam welding. This method is based on the determination of the concentration of chemical elements in the vapor above the welding zone. Taking into account these data model is built 2D diffusion processes with heat and mass transfer elements in the melt, which ...

Push or Pull, How Does Silk Flow?

J. Sparkes [1],
[1] University of Sheffield, Sheffield, UK

Silk is one of the longest used and most recognizable textiles that we, as a society, use regularly. We see it as a luxury good, worn as an indicator of success and value. However, despite mankind having domesticated and farmed silkworms for millennia, we still know relatively little about the manufacturing process which converts the liquid silk into the fibers we are so familiar with. Increased ...

Thermo-fluid Dynamics Modelling of Hydrogen Absorption and Desorption in a LaNi4.8Al0.2 Hydride Bed

D. Baldissin[1] and D. Lombardo[1]
[1]Compumat S.r.l., Torino, Italy

A two-dimensional mathematical model for the absorption and desorption of H2 in LaNi4.8Al0.2 was developed and experimentally validated. The model is composed of an energy balance, a mass balance and a momentum balance. These differential equations are numerically solved by means of the finite element method using the software COMSOL Multiphysics®. From a comparison between theoretical ...

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development

F. Noto[1,2], V. Bellini[1,2], E. Cisbani[3,4], V. De Smet[1,5], F. Librizzi[6], F. Mammoliti[1,2], and C. Sutera[6]
[1]Dipart. di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]INFN – Sezione di Catania, Catania, Italy
[3]IINFN – Sezione di Roma - Sanità Group, Roma, Italy
[4]Italian National Institute of Health, Roma, Italy
[5]Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[6]NFN - Sezione di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm2 without noticeable aging and to provide the sub millimeter resolution on working chambers up to 45x45 cm2. A new GEM based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent ...

Miscible Viscous Fingering: Application in Chromatographic Columns and Aquifers

S. Pramanik[1], G. L. Kulukuru[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

When a less viscous fluid displaces a more viscous one in a porous medium or Hele-Shaw cell, the interface between the two miscible fluids does not remain flat and deforms into fingers growing in time [1]. It occurs due to the faster movement of less viscous fluid than the more viscous one, for a given pressure gradient. Fingering affects in aquifers, in packed bed reactors, and detrimental to ...

Predicting the Transformation of a Liquid Food Product within a Tubular Heat Exchanger

A. Plana-Fattori [1], E. Auger [1], C. Doursat [1], D. Flick [1]
[1] AgroParisTech, Paris, France

Continuous heat treatment is employed in food industry as a key step in the production of selected products, like dairy desserts. The evolution of an aqueous suspension of starch granules along an existing heat exchanger is here studied by 3D modeling of fluid flow, heat transfer and transformation. 3D modeling puts in evidence the role played by the curved tubes (bends) situated between ...

CFD Analysis of a Heat Exchanger for an Electric Machine

A. Curci [1], D. Falchi [2], G. Secondo [1],
[1] ABB S.p.A. Italy
[2] Università degli studi di Pavia, Italy

In recent years the thermal behavior of electric machines is an attractive research topic. Due to the complexity of the problem, several approaches that exploit FEM analysis have been developed and presented in literature. In this research a 3D thermo-fluid dynamic simulation of an electric machine equipped with rubber belts directly applied on its shaft has been performed through COMSOL ...

A Modified Koutecký-Levich Equation for the Analysis of Electrochemical Flow Cells with Complex Geometries

S. A. Tschupp [1], S. E. Temmel [1], N. Poyatos Salguero [1], J. Herranz [1], T.J. Schmidt [2],
[1] Paul Scherrer Institut, Villigen, Switzerland
[2] ETH Zürich, Zürich, Switzerland

Electrochemical flow cells have found widespread use in analytical chemistry due to their short response time, high sensitivity and selectivity. The geometrical flexibility and therefore, the ease of coupling the electrochemical to other experimental techniques has attracted considerable interest for applications in electrocatalytic research as well. Such coupling is far more cumbersome with the ...

Modeling the Acoustic Scattering from Objects Buried in Porous Sediment Using COMSOL Multiphysics® Software

A. Bonomo [1], M. Isakson [1],
[1] Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

A frequency-domain finite element (FE) technique for computing the acoustic scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field based on Ref. 1 is extended to poroelastic media and implemented in COMSOL Multiphysics® software. This method allows for the scattering body to consist of any number of acoustic, elastic, and poroelastic domains. The ...