See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
In this paper, a numerical study is conducted on the melting and solidification process of metal foam/paraffin wax with cyclic heating and cooling. A mathematical model based on the Brinkman-Frochheimer extended Darcy equation and the local thermal non-equilibrium model (LTNE) is ... Read More
Four-point probe resistance measurements on the microscale can induce significant localized heating which can be a source of measurement error, or an opportunity to measure thermal properties of materials. The amplitude and phase delay of the temperature affect micro four-point probe ... Read More
With the ReactorSTM the relationship between surface structure and catalyst activity under industrially relevant conditions can be investigated. It enables atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry. It consists of a ... Read More
At Leoni, we are not only working towards even more reliable, performant cables by simulating their electric, magnetic, mechanical as well as thermal properties but also bring our customer applications to our design board. Based, amongst others on multi-physical simulations, we prepare ... Read More
Laser technologies such as welding, cutting and metal deposition are widely used in the industry. High quality requirements regarding process products cause that there is often a need to monitor the process. For this purpose, optical sensors integrated with a laser head are often used. ... Read More
Abstract: In order to study thermal conditions and air flows in an office room, 3D FEM simulation model was created. The room is enclosed by walls, floor and ceiling which thermal characteristics are specified by typical heat transfer coefficients and specific heat capacities. Space ... Read More
We present the model of THz sensor based on thermoelectric Bi-Sb thin films. The model is based on an electromagnetic heating interface and combines radiofrequency and heat transfer modules. The studied frequency was 0.14 THz, irradiation power 30 mW. Films had a thickness of 150 nm and ... Read More
A quantification of spatial and temporal evolution of laser-induced plume would enhance the comprehension of high speed imaging results and allow optimizing the acquisition conditions for the emission spectroscopy. What temperature and concentrations of the evaporating species are ... Read More
Calorimetry is the method of choice for determining one of the most elementary physical quantities: heat, Q [in J]. Depending on the individual issue a wide range of techniques, devices and methods are available for users [1]. One approach is called isothermal microcalorimetry (IMC). It ... Read More
In this numerical investigation, the effective thermal conductivities (ETC) of periodic complex structures are evaluated. These structures are to be used as packing in Heat-Integrated Distillation Columns (HIDiC). Only high-porosity (>85%) complex structures are considered for ... Read More