Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based modelling. Since then, he has focused on carbon material and process simulation employing methods of optimization ...

Design and Implementation of MEMS based Blood Viscometer for INR Measurement

J. G. Immanuel[1], K. Poojitha[1], B. Viknesshwar[1], A. Gupta[1]
[1]PSG College of Technology, Peelamedu, Coimbatore, Tamil Nadu, India

The paper brings out the designing and implementation of blood viscosity monitoring device that gives us the INR to measure the effectiveness of anti coagulant medications .When a blood vessel is damaged, clotting cascade begins that results in blood clot. This process is affected by several medical conditions where it becomes mandatory for a patient to intake anti-coagulants. Thus to monitor ...

Statistical Modeling and Contact Analysis of RF MEMS Surface

J. Liu [1], V. B. Chalivendra [1], C. Goldsmith [2], W. Huang [1],
[1] Department of Mechanical Engineering, University of Massachusetts - Dartmouth, Dartmouth, MA, USA
[2] MEMtronics Corporation, Richardson, TX, USA

Radio frequency (RF) micro-electro mechanical system(MEMS) switch works in on/off modes controlled by electrostatic forces. In off mode, rough surfaces of electrodes come into a contact to shunt the RF signal. Surface contact area has been recognized as a key factor in RF MEMS performance and reliability. Multi scale regular-fractal structure is observed on MEMS surface. Nonlinear Structural ...

Positioning System for Particles in Microfluidic Structures

D. Kappe[1], A. H├╝tten[1]
[1]University of Bielefeld, Bielefeld, Germany

The possibility to detect and probe molecules in microfluidic devices gives rise to interesting applications. There are different approaches how to detect and probe particles, but a common step, for most methods, is to place the particles on a sensor. This can be done by applying external field gradients, or in this case by utilizing gravitational and hydrodynamic effects. Therefore, the sensor ...

Dynamic Simulation of Electrochemical Etching of Silicon with COMSOL

A. Ivanov[1], U. Mescheder[1]
[1]Furtwangen University, Furtwangen, Germany

In the presented work the dynamic simulation of a silicon anodization process is performed. Two mechanisms of etch form development (diffusion in electrolyte, current flow) are considered and simulated. Influence of electrolyte conductivity and radius of the opening in the masking layer is discussed.

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry[1], M. K. Patel[1], C. Bailey[1], M. P.Y. Desmuliez[2], W. Yu[3]
[1]Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
[2]Microsystems Engineering Centre (MISCEC, School of Engineering & Physical Sciences, Heriot Watt University, Earl Mountbatten Building, Edinburgh, United Kingdom
[3]State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China

Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS to fibre-optical waveguides. It makes use of the dielectric properties of polymers combined with a heavily ...

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

Analyte Capture from Liquid Samples: Size Matters

M. Weber[1], M. Reed[1]
[1]Yale University, New Haven, CT, USA

Arrays of vertical pillars, Micro Purification Chips, have been widely used for analyte capture from liquid samples [Henderson et. al, 2006], [Toner et. al, 2007], [Stern et. al, 2010]. However exact understanding of the capture efficiency mechanisms has not been previously explained. Here we present a model in COMSOL Multiphysics® which calculates analyte capture efficiency based on initial ...

Study of Artificial Molecular Engines Action Through COMSOL Multiphysics® Program

L. Moro[1], F. Lugli[1], and F. Zerbetto[1]

[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

Rotaxanes are a class of molecules recently developed in laboratory that have been heralded as possible molecular motors. The motor is constituted by a linear molecule (thread) and a ring-shaped molecule (macrocycle), which is free to move along the thread, switching between two, or more, energetically stable interaction points (stations). Molecular motors start their functioning far from ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...