Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimizing the Design of Polymer based Unimorph Actuator using COMSOL Multiphysics

V. Tiwari[1], R. Sharma[1], G. Srivastava[1], R. Dwivedi[1]
[1]Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

Cantilever beam-type transducers have been in great demand and explored widely in the recent years, typically in thin film form because of their sensor and actuator applications. The piezoelectric cantilever is the most preferred structure employed in technological applications. Depending on the required flexural motion and sensitivities, these piezoelectric cantilevers can be used in unimorph, ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

3D-Modeling of Magnetophoretic Separation of Superparamagnetic Dispersions Using COMSOL Multiphysics® Particle Tracing Module

D. Kleinehanding[1], L. Teich[1], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany

Magnetophoresis is a process of great interest for novel applications based on magnetic nanoparticles and colloids. Environmental applications like wastewater treatments and pollutant removal, biomedical applications like protein isolation, drug delivery, magnetic hyperthermia for cancer treatment, and magnetic-particle imaging are just a few of the numerous technological areas which exploit the ...

Simple Finite Element Model of the Topografiner - new

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the ...

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the dielectric–film ...

Modeling Electric Fields in Slit Capillary Array Fluidic Actuators with Complex Electrode Geometries

J. Frey[1], A. Droitcour[1], D. Laser[1]
[1]Wave 80 Biosciences, San Francisco, CA, USA

With their small size, low manufacturing cost, fast transient response, and capacity to generate fluid power directly from small electrical power sources, microdevices incorporating electroosmostic flow (EOF) have wide-ranging applications, including newly developed high-performance bioassay systems suitable for use in resource-limited settings. We report on a class of EOF-based devices called ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based modelling. Since then, he has focused on carbon material and process simulation employing methods of optimization ...

Multiphysics Modeling of Implantable Micro-Electrode for Diagnostic and Therapeutic Applications in Neural Disorders

H. W. Ferose, R. G. Prasath, M. Alagappan, and G. Anju .
PSG College of Technology
Tamil Nadu, India

Neural disorders like epilepsy, Parkinson’s disease and Alzheimer’s disease have become a major area of concern because of their complexity and the huge number of occurrences. At present, most of the treatments are based on drugs and external nerve stimulation demanding critical care. This study aims at the design and simulation of an implantable micro-electrode which can lead to better ...

Design Variability of a MEMS Resonator

H. van Halewijn[1], J. Beek[2]
[1]Physixfactor, Nijmegen, The Netherlands
[2]NXP, Eindhoven, The Netherlands

It is important in designing micro-electromechanical systems (MEMS) to reduce the variability of design parameters caused by manufacturing tolerances and material properties. At NXP COMSOL has been used to investigate many aspects of the design, such as the Q-factor, anchor losses, thermal behavior, parasitic capacitance of the resonator and more. Quartz crystal resonators are used in many ...