Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Electro-Thermal Modeling of High Power Light Emitting Diodes Based on Experimental Device Characterization  

T. Lopez[1], and T. Margalith[2]

[1]Philips Research, Aachen, Germany
[2]Philips Lumileds Lighting Company, San Jose, CA, USA

This paper presents a 3D finite element model in COMSOL for the electro-thermal analysis of high power light emitting diodes (LEDs). The proposed model and implementation approach require basic electrical and optical parameters that may be experimentally derived with the aid of advanced post-processing techniques. Extensive experimental validation reveals the capability of the model to ...

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

DNA Interactions in Crowded Nanopores - new

K. Misiunas[1], N. Laohakunakorn[1], S. Ghosal[2], O. Otto[1], U. F. Keyser[1]
[1]University of Cambridge, Cambridge, UK
[2]Northwestern University, Evanston, IL, USA

The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a bead held in a laser optical trap to produce a "molecular tug-of-war". We measure this tether force as a function ...

Design of MEMS based Polymer Microphone for Hearing Aid Application

V. S. Nagaraja[1], Ramanuja H. S.[1], Deepak K[1], S. L. Pinjare[1]
[1]Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India

In this work, a MEMS based condenser microphone [1,2] using Polyimide as the diaphragm has been designed. The microphone structure has a backplate placed on top of the diaphragm. The backplate and the diaphragm are made up of polyimide. The two polyimide plates are separated by air gap which is achieved by using Aluminium as a sacrificial layer in between, which is etched away to create the air ...

Simulation and Fabrication of Wireless Passive MEMS Pressure Sensor

E.A. Unigarro Calpa[1], D.A. Sanz Becerra[1], A. Arciniegas[2], F. Ramirez[1], F. Segura-Quijano[1]
[1]Universidad de los Andes, Bogotá, Colombia
[2]Instituto Barraquer de América, Bogotá, Colombia

A wireless passive pressure sensor and the measurement system were design and simulated using COMSOL 4.3. The sensor is based on MEMS capacitor attached to a planar inductor for wireless powering and readout. An external coil is used for the measuring system. The pressure to be measured compresses the MEMS capacitor and changes sensor\'s resonance frequency. COMSOL 4.3 was used for the analysis ...

Effective Properties of Viscoelastic Composite with Piezoelectric Fibers

M. Al-Ajmi [1], P. Muthusamy [1],
[1] Mechanical Engineering Department, Kuwait University, Kuwait

Numerical homogenization of fiber reinforced composites has become a valuable design tool by utilizing the power of modern Finite Element Analysis. Piezoelectric materials are used extensively as sensors and actuators. Piezoelectric composites are more desirable than the homogeneous layers since they relatively overcome the brittleness disadvantage of piezoelectric material and can be tailored ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the ...

Modeling Void Drainage with Thin Film Dynamics

J.J. Gangloff Jr.[1], W.R. Hwang[2], S.G. Advani[1]
[1]Center for Composite Materials, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]School of Mechanical Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea

Voids in composite materials can lead to degraded structural performance. The following is a study of voids or bubbles in uncured viscous polymer resin during composites processing. The goal is to determine if voids can successfully migrate towards vacuum pathways, coalesce with the pathways, and escape. Inherent to the coalescence process is the drainage and rupture of the resin thin film ...

Electric Field Density Distribution for Cochlear Implant Electrodes

N.S. Lawand[1], J. van Driel[2], P.J. French[2]
[1]Electronic Instrumentation Laboratory (EILab), Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Delft, The Netherlands
[2]Delft University of Technology, Delft, The Netherlands

Cochlear Implants are implantable devices which bypasses the non-functional inner ear and directly stimulates the hearing nerve with electric currents thus enabling deaf people to experience sound again. Implant electrode array design is limited in electrode count, due to their large size in accordance to scala tympani (ST) with restrictions for deeper insertion in ST thus depriving access to ...