Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Piezoelectric Nanofibers for Harvesting Energy Applications - new

S. Rouabah[1], A. Chaabi[1]
[1]Electronics Department, Constantine University, Constantine, Algeria

In this work, we have taken a model which is simulated using COMSOL Multiphysics®. It was used as a tool to design, characterize and to simulate an example which is nanofibers based piezoelectric energy generators. The results are compared with other available sources but using with another materials. After applying a pressure on the top of surface of nanogenerator, the output parameters ...

Calculation of Surface Acoustic Waves on a Piezoelectric Substrate using Amazon™ Cloud Computing

U. Vogel [1], M. Spindler [1], S. Wege [1], T. Gemming [1]
[1] Leibniz Institute for Solid State and Materials, Dresden, Germany

In this work, we seek to simulate SAWs for a better understanding and to benchmark the currently available cloud computing possibilities of COMSOL Multiphysics® software. By using the MEMS module we demonstrate 3D models with reduced geometry to achieve principle information about the wavefield. For a benchmark, a high-speed workstation with limited memory (RAM) is compared to the most potent ...

MEMS based Gecko Foot for Micro Robotics

A. Pasumarthy [1], H. Sinha [1], A. Islam [1],
[1] Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Gecko foots have inspired researchers to develop designs that can help robots to tread vertically oriented surface. These nanobots find many applications as they can perform a lot of operations more efficiently and also lower the cost of such operations. These can be employed in various fields: medical, industrial etc. Gecko lizards use dry adhesion van der Waals forces to climb walls produced ...

CMUT Based Free Membrane Intra-Cardiac Volumetric Blood Flow-Meter

P. Priya [1], B. D. Pant [2],
[1] Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
[2] CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India

In this paper, a free membrane is used as a receiver to increase the capacitance and therefore the resolution of the flow meter. For the current application, from the wavelength of sound wave in soft tissue (c= 1540 m/s) the resolution was calculated to be 0.48 mm. This gives the first Eigen frequency of the capacitive structure according to which the poly silicon membrane was designed. After ...

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation

S. Sihn[1,2], and A.K. Roy[2]

[1]Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
[2]University of Dayton Research Institute, Dayton, Ohio, USA

COMSOL Multiphysics was used to solve a phonon Boltzmann transport equation (BTE) for nanoscale heat transport problems. One dimensional steady-state and transient BTE problems were successfully solved based on finite element and discrete ordinate methods for spatial and angular discretizations, respectively, by utilizing the built-in feature of the COMSOL, Coefficient Form of PDE.

Polyimide Thermal Micro Actuator - new

A. Arevalo[1], I. G. Foulds[2]
[1]Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of British Columbia, Vancouver, BC, Canada

Joule heating is simulated in COMSOL Multiphysics® software for the electro-thermal micro actuator. The aim is to choose the optimal design parameters to get the largest possible in-plane displacement. The comparison between the different possible configurations will reveal the optimal parameters for the longest displacement. Our current micro fabrication process allows the actuator to use ...

Design and Finite Element Analysis of Electrothermal Compliant Microactuators

A. R. Kalaiarasi, and S. H. Thilagar
Annauniversity Chennai
TamilNadu, India

Electrothermal actuators are capable of providing larger displacements compared to electrostatic actuators. Four designs for ETC actuators with the same material properties and same dimensions are studied.

MEMS Based Sensor for Blood Group Investigation

M. Kaushik [1], S. Katti [1], V. Saradesai [1], P. Naragund [1], P. Vidhyashree [1], A. K. V. Nandi [1]
[1] B.V. Bhoomaraddi College of Engineering and Technology, Hubli, India

This article describes the design of MEMS based cantilever structure intended for determination of blood group and it is compared with manual method. Cantilever structure design has a sensing layer and when a blood sample comes in contact with this, results in coagulation. The surface tension in turn occurs due to chemical and biological reactions of antigen and antibodies resulting in ...

Optimization of MEMS Based Capacitive Accelerometer for Fully Implantable Hearing Aid Application

A. Dwivedi [1], G. Khanna [1],
[1] NIT Hamirpur, Hamirpur, Himachal Pradesh, India

This work describes the design and optimization of three prototypes of microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. The analysis is done using COMSOL Multiphysics®. The maximum applied acceleration was considered 1g. Human temporal bones ...