See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Capacitor Discharge Sintering (CDS) is an ultrafast Electric Current Assisted Sintering method (u-ECAS) suited for electrically conductive powders. It is characterized by relatively short processing times (milliseconds range) and much lower sintering temperatures than the melting point ... Read More
The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor mechanical strength and toughness of SiC/SiC composites manufactured by CVI (Chemical Vapour Infiltration) process. This work presents a micro/macro Microwaveassisted Chemical Vapour ... Read More
Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We ... Read More
It is possible to control the motion of magnetic beads using a combination of hydrodynamic and electromagnetic forces. In this work, we investigate the possibility to manipulate the motion of beads with different magnetic moments in a special microfluidic structure so as to separate ... Read More
Convective transport of macromolecules or micro and nanoparticles in microsystems are usually predicted by solving the Navier Stokes equations for the carrier fluid and a concentration equation for the diffusing species. In the case of isolated particles or complicated geometries with ... Read More
One challenge in designing micro-electromechanical systems (MEMS) is considering the variability of design parameters caused by manufacturing tolerances and material properties. The function of MEMSs is significantly influenced by this variability, which can be represented in terms of ... Read More
The mixing characteristics and residence time distributions (RTDs) of a staggered herringbone microchannel have been investigated numerically by COMSOL Multiphysics and by particle tracking algorithms that incorporate diffusion via a random walk. All simulations were validated with ... Read More
This paper presents a 3D finite element model in COMSOL for the electro-thermal analysis of high power light emitting diodes (LEDs). The proposed model and implementation approach require basic electrical and optical parameters that may be experimentally derived with the aid of advanced ... Read More
A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, ... Read More
The mixing of liquids was characterized in thirteen different microfluidic devices. The goal was to characterize, in a uniform manner, the flow and mixing that occurred in slow, laminar flow and to present the results that allow quick designs. The mixing of a dilute chemical in another ... Read More
