Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we ...

Development of MEMS-based Pressure Sensor for Underwater Applications

Aarthi E[1], Pon Janani S[1], Vaidevi S[1], Meenakshi Sundaram N [1], Chandra Devi K[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Blind cave fish are capable of sensing flows and movements of nearby objects even in dark and murky water conditions with the help of arrays of pressure-gradient sensors present on their bodies called lateral-lines. To emulate this functionality of lateral-lines for autonomous underwater vehicles, an array of polymer MEMS pressure sensors have been developed that can transduce underwater ...

Fluid-structure Interaction Modeling of Air Bearing

H.R. Javani[1], P. Kagan[2], F. Huizinga[1]
[1]ASML - MDev – Mechanical analysis, Veldhoven, The Netherlands
[2]ASML - MDev – System Dynamics, Veldhoven, The Netherlands

Air bearings are special type of bearings which provide nearly zero friction between two surfaces. This is achieved by a compressed layer of gas between the surfaces. This study presents a modeling technique for an Air bearing component. COMSOL Multiphysics® is used to efficiently solve a coupled Fluid-Structure Interaction analysis. Computational time is significantly reduced compared to ...

MEMS Based Sensor for Blood Group Investigation

M. Kaushik [1], S. Katti [1], V. Saradesai [1], P. Naragund [1], P. Vidhyashree [1], A. K. V. Nandi [1]
[1] B.V. Bhoomaraddi College of Engineering and Technology, Hubli, India

This article describes the design of MEMS based cantilever structure intended for determination of blood group and it is compared with manual method. Cantilever structure design has a sensing layer and when a blood sample comes in contact with this, results in coagulation. The surface tension in turn occurs due to chemical and biological reactions of antigen and antibodies resulting in ...

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism - new

E. Rawashdeh[1], A. Arevalo[1], D. Castro[1], I. G. Foulds[2], N. Dechev[3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of BC, Vancouver, BC, Canada
[3]University of Victoria, Victoria, BC, Canada

In this work we present the simulation of a micro-scale large displacement compliant mechanism called the Tsang suspension. It consists of a flat micro-plate anchored down by two springs on either side, that can rotate out-of-plane and maintain its vertical assembly by a simple single-axis actuation. COMSOL Mutliphysics® software was used to simulate these devices and extract the reaction forces ...

Plasmonics of Nano-Gaps - new

T. Hutter[1], S. Mahajan[2], S. R. Elliott[1]
[1]University of Cambridge, Cambridge, UK
[2]University of Southampton, Southampton, UK

Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed very near to a metallic substrate is studied and discussed. Finite-element numerical simulations were used in ...

Characterization of a Tonpilz Transducer and Performance Analysis for a MEMS-Transducer Array

V. Vadde, and B. Lakshmi G

In this paper, we develop and analyze a standard piezoacoustic Tonpilz-transducer model for underwater acoustics in Comsol by addressing the attendant piezoelectric and pressure acoustic multiphysics phenomena. Transducer properties that are studied and characterized are the center frequency, bandwidth, linearity, sensitivity, and noise figure. In an effort to miniaturize the transducer, a ...

MEMS-based Handy Fuel Adulteration Detection Device

Anumeha Dwivedi[1], Dr. R. Dey[2]
[1]BITS Pilani K.K. Birla Goa Campus, Goa, India
[2]Associate Professor, BITS Pilani K.K. Birla Goa Campus, Goa, India

Adulteration of automobile fuels, especially petrol and diesel is a rampant malpractice in India. With the rising prices of fuel and the subsidy on kerosene, getting away with even 10-15% adulteration is immensely profitable.To check adulteration effectively, it is necessary to monitor the fuel quality at the distribution point itself. The equipment for this purpose should be handy and the ...

Optimization of MEMS Based Capacitive Accelerometer for Fully Implantable Hearing Aid Application

A. Dwivedi [1], G. Khanna [1],
[1] NIT Hamirpur, Hamirpur, Himachal Pradesh, India

This work describes the design and optimization of three prototypes of microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. The analysis is done using COMSOL Multiphysics®. The maximum applied acceleration was considered 1g. Human temporal bones ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...