Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development of MEMS-based Pressure Sensor for Underwater Applications

Aarthi E[1], Pon Janani S[1], Vaidevi S[1], Meenakshi Sundaram N [1], Chandra Devi K[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Blind cave fish are capable of sensing flows and movements of nearby objects even in dark and murky water conditions with the help of arrays of pressure-gradient sensors present on their bodies called lateral-lines. To emulate this functionality of lateral-lines for autonomous underwater vehicles, an array of polymer MEMS pressure sensors have been developed that can transduce underwater ...

Design and Simulation of Underwater Acoustic MEMS sensor

S. Prabhu [1], Nagbhushan [1],
[1] Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

Silicon based MEMS have wide applications in under water sensors. This work aims one such applications, hydrophone. Hydrophone detects the pressure variations of acoustic signals and noise in the water and produces an output voltage proportional to the pressure. Here the attempt is made to design and simulate MEMS based underwater acoustic sensor whose working is based on piezoresistive physics. ...

MEMS-based Handy Fuel Adulteration Detection Device

Anumeha Dwivedi[1], Dr. R. Dey[2]
[1]BITS Pilani K.K. Birla Goa Campus, Goa, India
[2]Associate Professor, BITS Pilani K.K. Birla Goa Campus, Goa, India

Adulteration of automobile fuels, especially petrol and diesel is a rampant malpractice in India. With the rising prices of fuel and the subsidy on kerosene, getting away with even 10-15% adulteration is immensely profitable.To check adulteration effectively, it is necessary to monitor the fuel quality at the distribution point itself. The equipment for this purpose should be handy and the ...

Antenna and Plasmonic Properties of Scanning Probe Tips at Optical and Terahertz Regimes - new

A. Haidary[1], P. Grütter[1], Y. Miyahara[1]
[1]Physics Department, McGill University, Montreal, QC, Canada

A wide variety of near-field optical phenomena such as apertureless near-field scanning microscopy (ANSM) at optical and terahertz (THz) regimes and surface enhanced Raman scattering relies on the electric field enhancement at the end of a sharp tip. Achieving and controlling this electric field enhancement is a key challenge for a wide range of applications such as surface modification, data ...

Optimization of MEMS Based Capacitive Accelerometer for Fully Implantable Hearing Aid Application

A. Dwivedi [1], G. Khanna [1],
[1] NIT Hamirpur, Hamirpur, Himachal Pradesh, India

This work describes the design and optimization of three prototypes of microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. The analysis is done using COMSOL Multiphysics®. The maximum applied acceleration was considered 1g. Human temporal bones ...

Simulation of Cantilever Based Sensors for Smart Textile Applications

S. Mano[1], S. Sowmya[1], Jaisree Meenaa Pria K N J[1], M. N. Sundaram[1], C. D. Koman[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Smart fabrics enable the integration of electronics into fabric. They can serve as a suitable sensor providing around-the-clock assistance for the real-time monitoring of health parameters. Here, we aim to develop a free-standing piezoelectric cantilever sensor integrated into conventional fabric to improve its functionality. These smart sensors have the ability to convert physiological ...

Simulation of ZnO Enhanced SAW Gas Sensor

H. du Plessis[1], W. Perold[1]
[1]University of Stellenbosch, Stellenbosch, South Africa

Surface acoustic wave (SAW) devices are widely used for their sensing capabilities and gas sensing is only one of many uses. There is an ever increasing need to make them as effective as possible by adding nanomaterials to the device. In this study a two-port delay-line structure with 128YX lithium niobate was simulated with COMSOL Multiphysics® in the form of a 2D cross-section. ZnO nanopillars ...

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we ...

Modeling of MEMS Based Bolometer for Measuring Radiations from Nuclear Power Plant

S. Nisitha[1], T. Satyanarayana[2], S. Sreeja[1]
[1]Department of EIE, Lakireddy Bali Reddy Engineering College, Mylavaram, Andhra Pradesh, India.
[2]NPMASS Centre, Department of EIE, Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra
Pradesh, India

There has been growing demand for high performance micro sensors capable of detecting nuclear radiations being released from various industries, Nuclear reactors. Radiations emitted from the radioactive materials are invisible and not directly detectable by human senses. Thus it is highly essential to work on design of bolometers with absorptive elements providing optimum sensitivity. The ...

Design and Optimization of Electrostatically Actuated Micromirror

Anna Thomas[1], Juny Thomas[1], Deepika Vijayan[1], K.Govardhan[2]
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

The microscopic size of MEMS devices accounts for strong coupling effects which arise between the different physical fields and forces. Micromirrors are essential parts of microswitches in fiber optic network telecommunication. They are usually 1 to 3 mm in size, fabricated from single crystalline silicon and mostly are electrostatically actuated. The objective is to design the micromirror to ...