Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a 100-dm3 ...

From Music to Non-Invasive Therapies via COMSOL Multiphysics® Models - new

E. Lacatus[1], G. C. Alecu[2], A. Tudor[2], M. A. Sopronyi[3]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]Student-Polytechnic University of Bucharest, Bucharest, Romania
[3]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

Vibration and music therapies are non-invasive treatments having effective results although their basics are still disputed. By the application of COMSOL Multiphysics® software for modeling and analysis, some of the nonlinear physical phenomena laying on these applications may be clarified. Acoustic environmental stimuli at different intensities are continuously interacting with our bodies, ...

Cloud Computations for Acoustics with Coupled Physics - new

A. Daneryd[1], D. Ericsson[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]COMSOL AB, Stockholm, Sweden

For certain classes of scientific and technical computations the cloud may offer easily accessible, scalable, and affordable gigantic computing power. A power that for these classes may lead to a step change in model and analysis complexity compared to what is feasible with dedicated clusters and similar networked solutions. Acoustics with or without interaction with coupled physics fields ...

Evaluation of the Shutdown Time of Subsea Pipeline for Oil Transportation - new

D. Maciel[1], N. Bouchonneau[1]
[1]Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil

The maintenance plan or rush-to-repair of a subsea pipeline for oil transport may result in the shutdown of the line, in other words, may stop the flow of fluid. During the shutdown, the temperature of the oil tends to decrease continuously, and the heavy molecules tend to crystallize and suspend in the oil, which increase the viscosity of the oil, and even form a paraffinic compound or freeze ...

Advanced Topics in Acoustics Simulation

M. J. Herring Jensen [1]
[1] COMSOL A/S, Lyngby, Denmark

In this session, we will discuss and showcase a few examples of advanced acoustics applications. In this context, “advanced” means problems that cannot simply be modeled “out-of-the-box,” but require the flexibility and strengths of COMSOL Multiphysics® software. Topics include: • Coupling of several space dimensions • Optimization • Equation-based modeling • Advanced boundary ...

Simulation of Heating Sol-Gel Thin Film By Laser Pulse Train

J. Zhang[1], Y. Mizuyama[1], W. Xiong[2], Y. Zhou [2], and Y. Lu[2]
[1]Panasonic Boston Laboratory, Newton, MA, USA
[2]University of Nebraska, Lincoln, NE, USA

Simulation of laser pulse-train (25ns, 60 kHz and 3000 pulses) heating Sol-Gel thin film using COMSOL Multiphysics software is investigated. The results show two kinds of temperatures formed on film surface by laser pulse-train heating. One is a single pulse induced transient peak-temperature, which is up to ~1635oC on both Si and glass substrates. The other is the accumulated ...

Densification and Shape Change of Calcined High Level Waste During Hot-Isostatic Pressing

T. Burnett, and D. Lower
CH2M-WG Idaho, LLC
The Idaho Cleanup Project at the Idaho National Laboratory
Idaho Falls, ID

Hot Isostatic Pressing (HIP) has been selected as a means of treating calcined high level waste (HLW). The process combines high temperature and pressure to densify the HLW in to a mineral similar to the geologic formulation of granite. This study uses COMSOL to predict densification and shape deformation of a stainless steel can filled with HLW. Two approaches were used to model ...

High Frequency Resonators Using Exotic Nanomaterials - new

B. Panchapakesan[1], M. Loeian[1]
[1]Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Human made mechanical resonators have been around for a thousand years. Early applications included musical instruments and chronographs operating in millihertz to kilohertz frequencies while more recent interest has turned ultra-high frequency resonators and oscillators suitable for wireless technologies, mass sensing and even biological applications. The trend has been towards small, stiff and ...

Benchmarking Tailored Formulations of Multiphase Flow in Porous Media

Á. Sainz [1,2], A. Nardi [1], E. Abarca [1], F. Grandía [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Université Toulouse III - Paul Sabatier, Toulouse, France

Nowadays, gas and nuclear waste storage, shale gas and EOR exploitation rise the need to understand and predict the fate of multiphase flows in the underground. Various formulations for multiphase flow arise from different linear combinations of governing equations and choice of associated unknowns. Each formulation has its own benefits and drawbacks; and the optimal may vary depending on the ...

Role of the Diffusion Current in Nonequilibrium Modeling of Welding Arcs - new

M. Baeva[1]
[1]INP Greifswald e.V., Greifswald, Germany

2D self-consistent nonequilibrium model of a free-burning arc in argon has been developed. The model is based on the COMSOL Multiphysics® platform and describes in a self-consistent manner the fluid dynamics, the heat transfer, the magneto-electrodynamics, and species conservation. The governing equations are solved applying the COMSOL Multiphysics® interfaces Laminar flow, Electric Currents, ...