Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Simulating Organogenesis in COMSOL Multiphysics®: Image-Based Modeling - new

D. Iber[1,3], Z. Karimaddini[1,3], E. Unal[1,2], D. Menshykau[1,3]
[1]D-BSSE, ETH Zurich, Basel, Switzerland
[2]DBM University of Basel, Basel, Switzerland
[3]Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland

Mathematical Modeling has a long history in developmental biology. Advances in experimental techniques and computational algorithms now permit the development of increasingly more realistic models of organogenesis. In particular, 3D geometries of developing organs have recently become available. In this paper, we show how to use image-based data for simulations of organogenesis in the COMSOL ...

Two-Phase Flow Models of Gas Generation and Transport in Geological Formations

O. Silva [1]
[1] Amphos 21 Consulting S.L. - iMaGe Consortium, Barcelona, Spain

Gas generation and transport through porous media is a process common to many field applications such as radioactive waste and underground gas storage. In these operations, the gas phase evolution depends on the thermodynamic conditions at depth, the properties of the fluids (density, viscosity, surface tension) and the geological formation (permeability, porosity, retention curve), as well as ...

Plasma Edge Simulations by Finite Elements using COMSOL

C. Hollenstein, and A. Howling
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Finite elements using COMSOL Multiphysics have been used to simulate the edge plasma in a large area capacitively coupled RF reactor. In order to reduce numerical difficulties simplified reactor edge geometries have been used. First results show the importance of electrostatic double layers within this plasma. In addition the non-uniform behaviour of the plasma sheath around convex and ...

Voltage and Capacitance analysis of EWOD system using COMSOL

D. Das[1], S. Sohail[1], S. Das[2], and K. Biswas[1]
[1]Electrical Engineering Department, IIT Kharagpur, India
[2]School of Medical Science and Technology, IIT Kharagpur, India

Electrowetting on Dielectrics (EWOD)systems is widely practiced digital microfluidic technique, used in Lab-on-a-Chip (LoC) system for biomedical application. In EWOD, with applied potential, the droplet minimizes its surface energy by transiting towards the actuated electrode. The problems with EWOD device for biological sample are that it will damage the cells if applied voltage across it ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

Numerical Simulation of Thermal Runaway in a THz GaAs Photoconductor - new

S. Sarodia[1,2], W. Zhang[2], E. Brown[2]
[1]Centerville High School, Dayton, OH, USA
[2]Wright State University, Dayton, OH, USA

Ultrafast terahertz photoconductor devices, especially photomixers, are usually limited in output power by device failure thought to be caused by excessive temperatures. Therefore, understanding of thermal breakdown is essential to the study of device reliability and failure of photoconductors. We performed a series of simulations to determine the electronic and thermal thresholds responsible ...

A Comparison of Discrete Fracture Models for Single Phase Flow in Porous Media Using COMSOL Multiphysics® Software

C. A. Romano-Pérez [1], M. A. Díaz-Viera [2],
[1] Facultad de Ingeniería, Universidad Nacional Autónoma de México, Coyoacán, DF, México
[2] Ingeniería de Recuperación Adicional, Instituto Mexicano del Petróleo, Gustavo A. Madero, DF, México

A comparison of discrete fracture and explicit fracture models for single-phase flow in fractured porous media using COMSOL Multiphysics® software is presented to understand the contribution of each individual fracture to fluid flow, and the exchange between fracture and surrounding medium at a scale such that the fractures could be modeled explicitly. The derived flow models are based on the ...

Feasibility Study of Thermal Actuators for MEMS Variable Emittance Radiators

L. Pasqualetto Cassinis [1],
[1] TU Delft, Delft, Netherlands

Based on COMSOL Multiphysics® software, an analysis of an innovative thermal actuation system capable of overtaking the traditional electrostatic comb drive, nowadays used for actuating the shutter array of variable emittance radiators, has been conducted as to validate this technology for the future active thermal control of CubeSats operating in an harsh environment, where thermal actuators ...

A Model to Simulate Laser Ablation in Tumor Using Dynamic Photothermal Coupling Interaction Model

Zhifang Li [1], Xiyang Zhang [1],
[1] College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China

Laser immunotherapy (LIT) was developed to treat late-stage, metastatic cancers through local laser irradiation and immunological stimulation. In ILIT, the photothermal effect induces immune responses by destroying and interrupting tumor cells through temperature elevation in target tissue. Tumor is rich in vascularture, and plays a critical part in photothermal effect. Vascularized tumour ...

Benchmarking COMSOL - Part 2: CFD Problems

Darrell Pepper
Professor of Mechanical Engineering,
University of Nevada - Las Vegas

Using COMSOL 3.5a, a set of benchmark problems requiring the use of the COMSOL Computational Fluid Dynamics (CFD) module has been simulated. Several of the problems include fluid-heat transfer interactions (Computational Heat Transfer - CHT). The four problems are: flow over a 2-D circular cylinder compressible flow in a shock tube incompressible heated flow over a 2-D backward facing step ...