Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful tool in the design process. In this study COMSOL is used to predict thermal and mechanical loads on a high ...

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

I. Mantilla[1], S. De Vicente[2]
[1]National University of Engineering, Lima, Perú
[2]Polytechnic University of Madrid, Madrid, Spain

We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation equations (mass and momentum) for a two-phase flow, which takes into account the existence of a small parameter rho ...

Multiphysics Modelling of Sound Absorption in Rigid Porous Media Based on Periodic Representations of Their Microstructural Geometry

T.G. Zielinski[1]
[1]Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Sound absorption in porous materials with rigid frame and open porosity can be very effectively estimated by applying the Johnson-Allard model in order to substitute a porous medium with an equivalent effective fluid and then utilise the Helmholtz equation for time-harmonic acoustics. The model uses several parameters which characterize the micro-geometry of porous material from the macroscopic ...

Hydro-Mechanical Modelling of Infiltration Test for a Bentonite-Sand Mixture: Model Verification and Parameter Identification

M. Hasal[1], R. Hrtus[1], Z. Michalec[1], R. Blaheta[1]
[1]Institute of Geonics AS CR, Ostrava, Czech Republic

The first aim of our work is to create a hydro-mechanical model (HM) of unsaturated fluid flow in bentonite-sand mixture (BSM) MX-80. The second aim is to validate and calibrate the developed model by using the data from a laboratory infiltration test of BSM. The used multi-physics model combines Richards type unsaturated flow with diffusive vapour flow and (nonlinear) elastic response of the ...

Statistical Sensitivity Analysis of Li-ion Pouch Battery Cell Dimension and Design

A. Samba[1], N. Omar[2], H. Gualous[3], Y. Firouz[2], O. Capron[2], M. Abdel MonemO[2], J. Smekens[2], P. Van den Bossche[2], J. Van Mierlo[2]
[1]VUB ETEC, Brussel, Belgium and UCBN, LUSAC, Cherbourg, France
[2]VUB ETEC, Brussel, Belgium
[3]UCBN, LUSAC, Cherbourg, France

Multi-Scale and Multi-Dimensional (MSMD) modeling approaches have been proposed to simulate the thermal, electrical distributions and concentration behaviors of large size pouch cell. This approach is based on coupling of the energy balance with the Newman’s electrode model. Newman’s 1D electrochemical model is often used for small size batteries but not sufficient enough for large size where ...

Numerical Modeling of Sampling Airborne Radioactive Particles Methods from the Stacks of Nuclear Facilities in Compliance with ISO 2889 - new

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the chimney and the compliance with the International Standard requirements as result of stack flow rate and ...

Simulation of Heating Sol-Gel Thin Film By Laser Pulse Train

J. Zhang[1], Y. Mizuyama[1], W. Xiong[2], Y. Zhou [2], and Y. Lu[2]
[1]Panasonic Boston Laboratory, Newton, MA, USA
[2]University of Nebraska, Lincoln, NE, USA

Simulation of laser pulse-train (25ns, 60 kHz and 3000 pulses) heating Sol-Gel thin film using COMSOL Multiphysics software is investigated. The results show two kinds of temperatures formed on film surface by laser pulse-train heating. One is a single pulse induced transient peak-temperature, which is up to ~1635oC on both Si and glass substrates. The other is the accumulated ...

Simulating Wear in Disc Brakes - new

N. H. Elabbasi[1], M. J. Hancock[1], S. B. Brown[1]
[1]Veryst Engineering, LLC., Needham, MA, USA

Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is Archard’s law, which relates the rate of material removal due to wear to the contact pressure, sliding ...

Evaluation of the Shutdown Time of Subsea Pipeline for Oil Transportation - new

D. Maciel[1], N. Bouchonneau[1]
[1]Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil

The maintenance plan or rush-to-repair of a subsea pipeline for oil transport may result in the shutdown of the line, in other words, may stop the flow of fluid. During the shutdown, the temperature of the oil tends to decrease continuously, and the heavy molecules tend to crystallize and suspend in the oil, which increase the viscosity of the oil, and even form a paraffinic compound or freeze ...

Rheological Behaviour of Single–Phase Non-Newtonian Polymer Solution in Complex Pore Geometry: A Simulation Approach

P. Idahosa[1], G. Oluyemi[2], R. Prabhu[2], B. Oyeneyin[2]
[1]IDEAS Research Institute/School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.
[2]School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.

One of the most important criteria for evaluating chemical enhanced oil recovery (EOR) processes that use polymers is its rheological behaviour which in turn account for other physical effects of adsorption and resistance factors during polymer-rock interactions. However, complete knowledge of behaviour of polymer solution in porous media has not yet been fully gained. A computational fluid ...