See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Simulation of Slag/Gas and Slag/Iron Interface Tilting in Blast Furnace Hearth During Slag Tapping

Y. Kaymak [1], T. Hauck [1], R. Lin [2] , H. Rausch [2]
[1] VDEh Betriebsforschungsinstitute GmbH, Düsseldorf, Germany
[2] AG der Dillinger Hüttenwerke, Dillingen, Germany

The blast furnace hearth drainage constitutes a major part of the blast furnace operation. Especially, keeping track of the iron and slag levels is crucial to adapt the tapping strategy. The operational target is usually not only to empty the blast furnace as far as possible but also to ... Read More

Quench Propagation and Detection in a YBCO Racetrack

G. Escamez[1], C. Lorin[1], T. Wu[1], P. J. Masson[1]
[1]University of Houston, Houston, TX, USA

High temperature superconductors (HTS) such as YBCO coated conductors show great promise for future applications where high magnetic fields are needed. The superconducting state only exists under a critical surface defined in the (J,T,B) space. Quench is the process by which a current ... Read More

Deformation of Stamp Features with Slanted Walls During Microcontact Printing new

F. E. Hizir[1], H. M. Al-Qahtani[1, 2], D. E. Hardt[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA
[2]King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Microcontact printing is a method for depositing patterns of thin films or molecular monolayers on surfaces using a polydimethylsiloxane (PDMS) stamp for selective mechanical contact (Figure 1). Undesired deformation of the stamp features during printing affects printed pattern quality. ... Read More

Thermal Design of Lithium Sulfur Batteries

R. Purkayastha [1], S. Schleuter [1], G. Minton [1], S. Walus [1], M. Wild [1],
[1] Oxis Energy Ltd, E1 Culham Science Centre, Abingdon, United Kingdom

OXIS Energy Ltd is a pioneer in the research and development of Lithium Sulfur batteries. Scaling up from R&D level coin cells to pouch cells for automotive use, engineering design and thermal management start to become critical. In this study, heat flow at various levels of the cell is ... Read More

COMSOL Multiphysics® 在热发电用真空集热管设计中的应用

赵旭山 [1], 郝雷 [1], 蒋利军 [1], 米菁 [1], 杨海龄 [1],
[1] 北京有色金属研究总院,北京,中国

随着能源紧张、油价攀升,环境污染严重,利用可再生绿色能源又成为不懈努力的方向。槽式太阳能热发电技术具有兼容性强、对电网冲击小、性价比高、发电成本低、可存储可调度等特点,近年来得到了迅猛发展,其核心部件为高温太阳能真空集热管,如图1所示。本研究利用 COMSOL Multiphysics® 针对真空集热管真实工况下的动态过程开展研究,并在此基础上开展集热管结构的优化设计。 由图 1 可知:集热管在电站中服役工况下,槽面会聚的太阳光主要集中于集热管下半面,上半面接收的会聚太阳光较少;导热工质自吸收管一端进入,接收会聚太阳光辐照能量,从吸收管另一端流出,流入→流出过程中 ... Read More

A Novel Physics Interface for Nakamura Crystallization Kinetics

A. Levy [1],
[1] Laboratoire de Thermocinétique de Nantes, Nantes, France

Crystallization phenomena are of first interest in several industrial applications (polymer forming processes, metallurgy, phase change flow, energy storage...). A classical way to model the crystallization evolution is using the Nakamura kinetics law. In this paper, a novel physics ... Read More

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics ... Read More

Biologic Tissues Properties Deduction Using an Opto-Mechanical Model of the Human Eye

A. V. Maurer [1], D. P. Enfrun [1], C. O. Zuber [1], R. Rozsnyo [2],
[1] R&D, Kejako, Plan-les-ouates, GE, Switzerland
[2] MNCM, HES-SO, GE, Switzerland

The visual accommodation is a complex biomechanical & optical process. Today in vivo imaging technologies do not allow to measure the eye components material properties, such as the refractive index or the stiffness: these properties are essential to understand and diagnose the effect of ... Read More

MEMS based Gecko Foot for Micro Robotics

A. Pasumarthy [1], H. Sinha [1], A. Islam [1],
[1] Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Gecko foots have inspired researchers to develop designs that can help robots to tread vertically oriented surface. These nanobots find many applications as they can perform a lot of operations more efficiently and also lower the cost of such operations. These can be employed in various ... Read More

Numerical Simulation of Vibrationally Active Ar-H2 Microwave Plasma

F. Bosi [1], M. Magarotto [2], P. de Carlo [2], M. Manente [2], F. Trezzolani [2], D. Pavarin [2], D. Melazzi [2], P. Alotto [1], R. Bertani [1],
[1] Department of Industrial Engineering, University of Padova, Padova, Italy
[2] CISAS "G.Colombo", University of Padova, Padova, Italy

Microwave discharges have a wide range of applications, such as gas conversion, material processing and surface treatment; also they can provide an efficient way for dissociation of molecular gases as CO2 and N2O. Depending on the operating pressure and temperature, non-equilibrium ... Read More