Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Multiphysics Modelling of a Microwave Furnace for Efficient Solar Silicon Production

N. Rezaii [1], J. P. Mai [1],
[1] JPM Silicon GmbH, Braunschweig, Germany

The JPM Silicon GmbH presents a novel method for the production of solar grade silicon in the microwave oven. This method can specially reduce the energy costs and increase the efficiency of the process. A numerical model is developed which depicts the physical, chemical and electromagnetic phenomena of silicon production process. In order to increase the efficiency of the system, it is ...

A Dual Continuum Model for Groundwater Flow in Karst Aquifers - new

R. Painter[1], J. Harris[1], T. Byl[1], L. Sharpe[1]
[1]Tennessee State University, Nashville, TN, USA

In karst terrain, the interaction between the fast moving, highly turbulent conduit flow and the slow moving, laminar flow through porous media is largely unknown. Yet the dual nature of the karst system impacts the residence time of solutes in the groundwater supplies of over 25% of the world’s population. This project attempts to address the need for a better understanding of the dual flow ...

Fluid Dynamic Analysis of the Multi-Lumen Thoracic Catheter

S. Budar [1], A. Ritter [1]
[1] Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA

In order to achieve an optimized design of the Multi-Lumen Thoracic Catheter (MLTC), fluid dynamics analyses were conducted utilizing COMSOL Multiphysics® software with LiveLink™ for Solidworks®. Lumen placement, diameters, and termination points were adjusted to ensure maximum drainage efficacy. It was determined through this study that even with the additional flow through the access lumen, ...

Advanced Topics in Acoustics Simulation

M. J. Herring Jensen [1]
[1] COMSOL A/S, Lyngby, Denmark

In this session, we will discuss and showcase a few examples of advanced acoustics applications. In this context, “advanced” means problems that cannot simply be modeled “out-of-the-box,” but require the flexibility and strengths of COMSOL Multiphysics® software. Topics include: • Coupling of several space dimensions • Optimization • Equation-based modeling • Advanced boundary ...

Multiphysics Process Simulation of the Electromagnetic-Supported Laser Beam Welding

M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

The article deals with the magnetically-supported high-power full-penetration laser beam welding of aluminum. A stationary simulation was conducted accounting for the effects of natural convection, Marangoni convection and solid-liquid phase transition as well as an electromagnetic volume source term. An ac magnet below the weld specimen induces eddy currents. Consequently, Lorentz forces occur ...

Investigations on Polarization Losses in Planar Solid Oxide Fuel Cells

S. T. Aruna [1], S. Senthil Kumar [1], A. Iyer [1], B. ShriPrakash [1]
[1] CSIR-National Aerospace Laboratories, Bangalore, Karnataka, India

In recent years, various configurations of planar Solid Oxide Fuel Cells (SOFC) have been developed for enhancing its performance. The objective of these efforts are centered on reducing polarization losses (also referred as "overpotential") by optimizing the structure and properties of three key components- anode, electrolyte and cathode. The present work was aimed at developing a model for ...

Heating of Metal Nanoparticles on Absorbing Substrates

L. Bergamini [1], O. Muskens [2], N. Zabala [1], J. Aizpurua [3]
[1] UPV/EHU, Bilbao, Spain; Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain
[2] University of Southampton, Southampton, UK
[3] Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain

It is well-known that metal nanoparticles (NPs) excited at the plasmon frequency not only exhibit peculiar optical properties (e.g., a peak in the extinction spectrum, an enhanced electromagnetic near-filed) but also heat up [1]. This phenomenon is highly investigated for medical applications, but it can be exploited also for the realization of optical devices. In our study we use COMSOL ...

Study & Modeling of 'Acoustic Matching Layers' for Ultrasound Imaging Probes Through Pulse-Echo FEM Simulation - new

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Ultrasound Imaging probes are specific devices that require a very detailed design of acoustic impedance match for the stack of layers that form the probe head (1,3). These are typically made of silicone rubber, special epoxy resins, polyurethanes and, of course, piezoelectric materials. The acoustic impedance, measured in Rayls, have to be matched similarly to an electric circuit (2), from a ...

Computational Fluid Dynamics (CFD) Simulation of Multiphase Flow in Biogas Digester

V. S. Kshirsagar[1], P. M. Pawar[1]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India

Effective suspension and settling are critical for controlling biomass retention in a biogas digester. This paper developed a Computational Fluid Dynamics (CFD) model to simulate the hydrodynamic characteristics of multiphase flow in biogas digester. This is carried out by using COMSOL Multiphysics® software for understanding the behavior of slurries of different viscosity. This study helps to ...

Acoustic Scattering through a Circular Orifice in Low Mach Number Flow

S. Sack [1], M. Abom [1]
[1] KTH, the Royal Institute of Technology, Stockholm, Sweden

The acoustic scattering through a circular orifice plate in a duct with low Mach number flow (M=0.1) is computed using the Linearized Navier-Stokes physics interface of COMSOL Multiphysics®. The work by Kierkegaard et al. is extended to account for higher order acoustic modes, i.e., behind the cut-on frequency of the first radial duct mode. Orifice flows tend to create a sharp separation zone at ...