Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization of Carbon Nanotube Field Emission Arrays

B. L. Crossley[1], M. Kossler[1], P.J. Collins[1], R. A. Coutu Jr.[1], and L. A. Starman[1]

[1]Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA

Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An optimized triode configured CNT field emission array is developed using the COMSOL Multiphysics Electrostatics Application to adjust five key physical dimensions to investigate the effects on the enhanced electric field at the CNT emitter tips. The five dimensions studied are CNT ...

A Comparison of Discrete Fracture Models for Single Phase Flow in Porous Media Using COMSOL Multiphysics® Software

C. A. Romano-Pérez [1], M. A. Díaz-Viera [2],
[1] Facultad de Ingeniería, Universidad Nacional Autónoma de México, Coyoacán, DF, México
[2] Ingeniería de Recuperación Adicional, Instituto Mexicano del Petróleo, Gustavo A. Madero, DF, México

A comparison of discrete fracture and explicit fracture models for single-phase flow in fractured porous media using COMSOL Multiphysics® software is presented to understand the contribution of each individual fracture to fluid flow, and the exchange between fracture and surrounding medium at a scale such that the fractures could be modeled explicitly. The derived flow models are based on the ...

Finite Element Analysis of Ferrofluid Cooling of Heat Generating Devices

T. Strek
Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland

An external magnetic field imposed on a ferrofluid with a temperature gradient, results in a non-uniform magnetic body force, which leads to a form of heat transfer called thermomagnetic convection. A magnet placed near the device will always attract the colder ferrofluid more than warmer. Viscous, two-dimensional, laminar and incompressible ferromagnetic fluid flow, under the influence of a ...

Benchmarking COMSOL - Part 2: CFD Problems

Darrell Pepper
Professor of Mechanical Engineering,
University of Nevada - Las Vegas

Using COMSOL 3.5a, a set of benchmark problems requiring the use of the COMSOL Computational Fluid Dynamics (CFD) module has been simulated. Several of the problems include fluid-heat transfer interactions (Computational Heat Transfer - CHT). The four problems are: flow over a 2-D circular cylinder compressible flow in a shock tube incompressible heated flow over a 2-D backward facing step ...

Field Joint Coatings for Deep Sea Pipelines - new

R. Verhelle[1], L. Van Lokeren[1], S. Loulidi[1], H. Boyd[2], G. Van Assche[1]
[1]Physical Chemistry & Polymer Science, Vrije Universiteit Brussel, Brussels, Belgium
[2]Heerema Marine Contractors, Leiden, The Netherlands

COMSOL Multiphysics® software is used to model the field joint application process on carbon steel pipelines for deep sea crude oil transportation, taking into account not only heat transfer, cure kinetics, and crystallization, but also thermal, cure and crystallization shrinkage and the resulting interfacial thermal stresses. Experimental data from the raw materials are implemented in the model ...

Development of a COMSOL Application for the Efficient Evaluation of an Engineered Barrier System

D. Sampietro [1], E. Abarca [1], H. von Schenck [2], J. Molinero [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radioactive waste repositories include barriers that work to contain the waste, thereby protecting human health and the environment. In deep geological disposal systems, barriers include the natural geological barrier and the engineered barrier system (EBS). The ability of the EBS to limit groundwater flow is important and optimized design solutions are often sought by means of numerical ...

Plasma Edge Simulations by Finite Elements using COMSOL

C. Hollenstein, and A. Howling
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Finite elements using COMSOL Multiphysics have been used to simulate the edge plasma in a large area capacitively coupled RF reactor. In order to reduce numerical difficulties simplified reactor edge geometries have been used. First results show the importance of electrostatic double layers within this plasma. In addition the non-uniform behaviour of the plasma sheath around convex and ...

Modelling of a 5 Cell Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) Stack: Analysis of Flow Configuration and Heat Transfer

A.S. Chandan[1], A. Mossadegh Pour[2], R. Steinberger-Wilckens[2]
[1]Centre for Hydrogen and Fuel Cell Research, University of Birmingham, Birmingham, United Kingdom
[2]University of Birmingham, Birmingham, United Kingdom

Polymer Electrolyte Fuel Cells (PEFCs) are a key technology in the advancement of society towards a low carbon future, in particular for use within the automotive sector. PEFCs are advantageous due to their low operating temperature (60-80 deg.C), quick start up times and responsiveness to load change. However, the requirement for expensive platinum, difficulty of water management and heat ...

Computational Fluid Dynamics (CFD) Simulation of Multiphase Flow in Biogas Digester

V. S. Kshirsagar[1], P. M. Pawar[1]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India

Effective suspension and settling are critical for controlling biomass retention in a biogas digester. This paper developed a Computational Fluid Dynamics (CFD) model to simulate the hydrodynamic characteristics of multiphase flow in biogas digester. This is carried out by using COMSOL Multiphysics® software for understanding the behavior of slurries of different viscosity. This study helps to ...

Using COMSOL Multiphysics® Software and the Application Builder for Neutron Transport in Discrete Ordinates

C. J. Hurt [1], J. D. Freels [2],
[1] University of Tennessee, Knoxville, TN, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Introduction: The numerical solution to the neutron transport equation is employed to study a variety of problems in nuclear engineering applications, including for both eigenvalue and fixed source studies. Historically, multiphysics analysis at the HFIR has utilized these solutions to include thermal-structural and thermal hydraulic physics with a weak coupling due to the limited ...