Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Antenna and Plasmonic Properties of Scanning Probe Tips at Optical and Terahertz Regimes - new

A. Haidary[1], P. Grütter[1], Y. Miyahara[1]
[1]Physics Department, McGill University, Montreal, QC, Canada

A wide variety of near-field optical phenomena such as apertureless near-field scanning microscopy (ANSM) at optical and terahertz (THz) regimes and surface enhanced Raman scattering relies on the electric field enhancement at the end of a sharp tip. Achieving and controlling this electric field enhancement is a key challenge for a wide range of applications such as surface modification, data ...

Modeling of Pulsed Laser Thermal Annealing for Junction Formation Optimization and Process Control

R. Negru [1], K. Huet[1], P. Ceccato[1], B. Godard[1]
[1]Excico, Gennevilliers, France

It is now a well known that the next generation devices in many fields of the semiconductor industry will be based on 3D architectures. In this framework, low thermal budget annealing technological solutions are required. For many applications, either in the field of sensors, microprocessors or high density memories, the Laser Thermal Annealing (LTA), an ultrafast and low thermal budget process, ...

Assessment of Diffuse Optical Tomography Image Reconstruction Methods Using a Photon Transport Model

M. M. Althobaiti [1], H. S. Salehi [2], Q. Zhu [2],
[1] Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
[2] Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA

Imaging of tissue with near-infrared diffuse optical tomography is emerging as a practical method to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. The accurate recovery of images by using numerical modeling requires an effective image reconstruction method. We illustrate a comparison between two widely used reconstruction methods using finite element ...

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion - new

J. Toney[1], J. Retz[1], V. Stenger[1], A. Pollick[1], P. Pontius[1], S. Sriram[1]
[1]SRICO, Inc., Columbus, OH, USA

This paper presents techniques for modeling annealed proton exchange (APE) and reverse proton exchange (RPE) waveguides in periodically poled lithium niobate for application to optical frequency conversion. A combination of time-dependent diffusion modeling and electromagnetic mode analysis using the RF module are used to predict the relationship between the poling period and the second harmonic ...

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we ...

Birefringence Induced in Optical Rib Waveguides by Thermal and Mechanical Stresses - new

G. Grasso[1], V. M. N. Passaro[1], F. De Leonardis[1]
[1]Photonics Research Group, Politechnic Institute of Bari, Bari, Italy

In this paper a multiphysics approach to study the optical properties of integrated waveguides influenced by thermal and mechanical stress is presented. The heating and pressure effects are evaluated by means the Heat Transfer and Structural Mechanics modules respectively. Finally, the electromagnetics capabilities of the AC/DC Module are used in order to evaluate the optical eigenfunctions and ...

Full-Wave Analysis of Nanoscale Optical Trapping

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

Plasmonic-based optical trapping is in its infancy and growing rapidly. Research in this area will significantly advance fundamental understanding in fields such as nanophotonics and biophotonics. Novel plasmonic trapping structures and systems can be designed and optimized using the COMSOL RF solver.   We present a study of plasmonicbased optical trapping of neutral sub-wavelength ...

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality factor of axisymmetric resonators with high accuracy in COMSOL. We treated the perfectly matched layer as an ...

Finite Element Analysis of a Fiber Bragg Grating Accelerometer for Performance Optimization

N. Basumallick[1], A. Ghosh[1], P. Biswas[1], K. Dasgupta[1], S. Bandyopadhyay[1]
[1]Fiber Optics Laboratory, Central Glass and Ceramic Research Institute, Kolkata, West Bengal, India

Sensitivity of a cantilever-mass based fiber Bragg grating (FBG) accelerometer can efficiently be tailored by altering the distance between the axis of the FBG sensor to the neutral axis of the cantilever. To accomplish that in general, a backing patch is used to mount the FBG on the cantilever. Use of finite element analysis to quantify the influence of the material constant (Young’s modulus) ...