See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The ongoing trend towards miniaturization, higher integration as well as cost efficiency will make it necessary to investigate a new assembly method for micro components. In this paper, a novel method of fluidic-based micro assembly is presented. A self-assembly effect which is caused by ... Read More
Preparative chromatography is an important separation method where the simulated moving bed (SMB) technology is an increasingly used separation process for binary mixtures. Several chromatographic columns are arranged in a ring where the feedings and drains are changed cyclically to ... Read More
Microreactors are important alternative to conventional reactors in chemistry, chemical, pharmaceutical and semiconductor industries due to their operation characteristics such as increased mass and heat transfer, uniform flow, safety, high throughput through array configurations, ... Read More
Cerebral vasospasm is a complication of subarachnoid hemorrhage and other neurosurgical emergencies that reduce blood flow to the brain. Part of the approach to management of vasospasm is to improve flow through the stenotic areas by reducing by decreasing blood viscosity and enhancing ... Read More
Improved performance of aeroengines requires the development of new manufacturing technologies for ceramic matrix composites (CMCs). This has been simulated using COMSOL Multiphysics. Specialized simulation technologies have been developed to describe the infiltration of molten material ... Read More
An optimal control problem (OCP) is studied to a PDE of elliptic type as well as state constraints. The resulting optimality system contains two PDEs, one algebraic equation and the so called complementary slackness conditions, i.e. dual products between function spaces. At this point, ... Read More
At the moment of DC activation, charged surfaces begin interacting with the adjoining electrolyte solution. The charges along the surface of that interface slowly attract oppositely charged ionic particles, which eventually gather on or near the surface, creating the Electric Double ... Read More
This paper presents results on the visualisation of tracks of charged particles in a non-uniform magnetic field. The field modelled is that generated by a coil driven by DC current. The motion of typical particles, such as electrons, ions and multiply-charged heavy particles has been ... Read More
Droplet generation in microfluidics is a powerful technique to get monodispersed emulsions and droplet size manipulation can be very advantageous in a wide area of applications such as pharmaceuticals, drug delivery, food products, chemical synthesis and biomedical applications. In the ... Read More
Genetic Algorithms (GA) have proved to be a complete and effective approach for solving optimization problems. This article presents the integration between COMSOL® and a GA optimization tool coded in MATLAB® for the optimization of two thermal systems: a constant area fin in 2D and a ... Read More
