See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Genetic Algorithms (GA) have proved to be a complete and effective approach for solving optimization problems. This article presents the integration between COMSOL® and a GA optimization tool coded in MATLAB® for the optimization of two thermal systems: a constant area fin in 2D and a ... Read More
This paper presents results on the visualisation of tracks of charged particles in a non-uniform magnetic field. The field modelled is that generated by a coil driven by DC current. The motion of typical particles, such as electrons, ions and multiply-charged heavy particles has been ... Read More
Microreactors are important alternative to conventional reactors in chemistry, chemical, pharmaceutical and semiconductor industries due to their operation characteristics such as increased mass and heat transfer, uniform flow, safety, high throughput through array configurations, ... Read More
A TAP reactor is a fixed-bed catalytic reactor operated in pulse (transient) mode under very low pressures. It has become a very important tool in catalytic studies as it fills the material and pressure gaps existing between practical conditions and high vacuum – monocrystal techniques. ... Read More
Perfectly matched layers (PML) are an efficient alternative for emulating the Sommerfeld radiation condition in the numerical solution of wave radiation and scattering problems. The key ingredient of the PML formulation is the complex scaling function, which controls the anisotropic ... Read More
Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the ... Read More
At the moment of DC activation, charged surfaces begin interacting with the adjoining electrolyte solution. The charges along the surface of that interface slowly attract oppositely charged ionic particles, which eventually gather on or near the surface, creating the Electric Double ... Read More
Outline of presentation: theory of phase-field modeling of ferroelectric materials parameter identification in free energy density finite element implementation: PDE form weak form periodic boundary conditions: electrical mechanical domain configurations intrinsic and extrinsic ... Read More
Droplet generation in microfluidics is a powerful technique to get monodispersed emulsions and droplet size manipulation can be very advantageous in a wide area of applications such as pharmaceuticals, drug delivery, food products, chemical synthesis and biomedical applications. In the ... Read More
This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means ... Read More
