See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
We study the gravity-driven film flow of a Newtonian liquid down an inclined plane. Many applications such as heat- and mass exchangers and evaporators or film coaters require undulated or rippled bottom topographies. In these cases, the interplay of gravity, surface tension and inertia ... Read More
Oil production industry investigates new methods to improve oil extraction from natural rocks. Since long time the dedicated simulation software has been used to better understand the behaviour and predict the production from oil reservoirs depending on the developed technologies. Modern ... Read More
The manufacturing of high quality injection molded parts requires a deep understanding of material properties, process parameters and product design. The behavior of a polymer during the injection molding process and the performance of the final part are strongly determined by the ... Read More
Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the ... Read More
With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses ... Read More
During the welding of tantalum with a ND: YAG pulsed laser, a deep and narrow cavity, called the keyhole, is formed. At the end of the process, surface tension forces provoke the collapse of the keyhole. For important interface deformations, gas bubbles can be trapped into the melting ... Read More
Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique ... Read More
One of the most critical aspects on water electrolysis is gas-liquid separation, especially in systems with forced convection. The main problem of this kind of circulation is that a gas fraction could return to the electrolysis circuit. A suitable design of separator devices could be a ... Read More
The use of an acoustic field to control the boiling process has the potential to increase the overall rate of heat transfer and delay the critical transition to film boiling. This system is being investigated through the development of a model of a single boiling bubble near a flat, ... Read More
Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is ... Read More
