See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt ... Read More
In this paper we used COMSOL Multiphysics to model basic physico-chemical effects relevant in polymer enhanced oil recovery (EOR) such as non-Newtonian rheology of the displacing phase, permeability reduction, adsorption and salinity effects. COMSOL\'s PDE interface as well as Species ... Read More
A laboratory-scale fluorine reactor was simulated with COMSOL Multiphysics®. This model employs fundamental fully coupled electron-, heat-, mass- and momentum transfer (two-phase) equations to deliver a transient model of the above-mentioned reactor. Quasi-steady-state results were ... Read More
In the conference we bring together a community that is scientifically diverse in an event about the use of COMSOL Multiphysics. Oral and poster presentations highlight achievements in multiphysics modeling and simulations using COMSOL. Read More
The interaction of a single particle in straight rectangular channel in laminar flow is modelled explicitly using the set of Navier Stokes equation for the fluid motion and Newton momentum equation for the particle motion in Cartesian coordinate system. The evaluation of integral force ... Read More
NASA and the Department of Defense have interest in the development of satellites which are several orders of magnitude smaller than those currently in use. These ‘nanosats’ will require new propulsion systems to offer precise thrust and impulse-bit characteristics on the order of 10 ... Read More
This paper presents steady and unsteady computational results obtained from numerical solutions of the full two-dimensional governing equations for annular internal condensing flows in a channel. This is achieved by tracking the “sharp” interface while solving the flow fields using ... Read More
In this conference we have brought together a community that is scientifically diverse in an event that allows for inspiring contacts about the use of COMSOL Multiphysics. It is an event to connect with the Spanish and Portuguese COMSOL Multiphysics users and participate in training ... Read More
Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. ... Read More
A flow and transport model in porous media was implemented in COMSOL Multiphysics® software to simulate, analyze and interpret Microbial Enhanced Oil Recovery (MEOR) processes at core scale under laboratory conditions. The flow model is biphasic and is based on the oil phase pressure ... Read More
