See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
A 1D phase change problem, known as Stefan’s problem, for which analytical solutions are available, is solved as a 2D problem using COMSOL Multiphysics. The PCM medium is semi-infinite, initially solid at its melting temperature Tm, and at t = 0, the wall temperature is raised to Tw > ... Read More
This session is devoted to phase change modeling in heat transfer simulations. The great interest in phase change comes from the outstanding thermal performance that it enables in particular for cooling or thermal protection applications. Alternatively, phase change can induce most of ... Read More
We present COMSOL solutions for a coupled gas flow and heat transfer problem, which occurs particularly when traffic pathways are constructed in high altitude and arctic regions, where the underground is frozen soil. To avoid melting of the frozen ground (which usually leads to ... Read More
The foaming process of a metal is a complex operation which needs to be closely controlled in order to guarantee the wanted properties, by avoiding the formation of defects in the structure of the material. In this work we use COMSOL Multiphysics® version 4.3b and apply the diffuse ... Read More
One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical ... Read More
Design of latent heat energy storage systems (LHESS) requires knowledge of heat transfer processes within them, as well as the phase change behavior of the phase change material (PCM) use. COMSOL Multiphysics can be used to model (LHESS). Natural convection plays a crucial role during ... Read More
Sintering is an important step in the manufacturing of polytetrafluoroethylene (PTFE) billets. The challenge in heating large billets stems from the inherent low thermal conductivity of PTFE. Existing literature suggests determining maximum heating rate experimentally using recommended ... Read More
Laser Welded Blank solutions enable to reduce vehicles weight and to optimize their crash performances by means of simultaneous tuning of different grades and thicknesses. The present work aims to characterize numerically and experimentally materials mixing during laser welding. For ... Read More
In this study, a small scale direct solar thermal energy storage system with secondary reflector is designed and developed. The main advantage of thermal energy storage is that cooking can be carried out during the time when there is little or no sun shine. In addition, no heat transport ... Read More
COMSOL Multiphysics can be used to model a latent heat energy storage system. A 2D numerical study was performed to simulate melting of a PCM including both conduction and convective heat transfer. The heat transfer in fluids and laminar flow physics interfaces were used. To model ... Read More
