See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Time-dependent multiphysical simulation of pulsed and continuous laser welding of dissimilar metals, based on Moving Mesh (ALE) approach, is proposed. Strong coupling between heat transfer, laminar compressible flow and ALE is used. The model was validated for a case of single ... Read More
COMSOL Multiphysics® software is used to model the field joint application process on carbon steel pipelines for deep sea crude oil transportation, taking into account not only heat transfer, cure kinetics, and crystallization, but also thermal, cure and crystallization shrinkage and the ... Read More
The purpose of this study was to develop mathematical models of the coupled electro-thermal process in selected, typical contactors that could then be validated and verified by comparing model predictions with the results of previous studies and with experimental data obtained during a ... Read More
An axially symmetric multiphysics model for industrial induction furnaces has successfully been converted from COMSOL Multiphysics version 3.5a to version 4.2. The model combines computation of magnetic fields, heat transfer and thermal stresses. The inner part of the furnace is ... Read More
In the design of electrorefiner, Working electrode and Counter electrode surface areas are very important. The main aim of this study is to understand the effect of the ratio of Anode to cathode Surface areas in an electrorefining cell. Application of this model to design electrorefiner ... Read More
Respect to the previous approaches, in this communication the electrochemical and chemical kinetics as well as the transport phenomena, were modelled at very high level of theory, taking into account all the parameters affecting the galvanic process, including turbulent convection ... Read More
The Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Laboratory is a unique instrument able to capture images of fast-evolving microstructure with exposure times of only 15 ns. This is more than six orders of magnitude faster than conventional in situ ... Read More
A time-dependent COMSOL Multiphysics model of an additive manufacture process, which uses powder consolidation by laser heating was developed, providing a platform to better understanding the manufacture process & provide a tool to reduce resulting distortion & optimization of an ... Read More
An inactive Demonstration facility for the integrated pyroprocess, named High temperature Electrorefining (HTER) facility is in developing stage. This facility is equipped with several types of pyroprocess equipment such as electro-refiner, salt and cadmium distillation equipment, ... Read More
Magneto-Hydrodynamic (MHD) power generation systems were originally investigated starting from the fact that the interaction of a plasma with a magnetic field must take place at much higher temperatures than could be observed in a mechanical turbine. The main problems of traditional MHD ... Read More
