See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium ... Read More
Peristaltic pumps are used during pharmaceutical manufacturing processes, for filling, filtration and mixing operations. Goal of this work was to develop a computational model of a peristaltic pump used for filling operations, to predict shear stresses and mass flow rates. For this ... Read More
The paper provides an overview of the state of art in computational electromagnetic. There are three major ar eas like Design, optimization and material selection for the electric machines. The computational tool based on finite elements is very useful and powerful field simulation ... Read More
One of the major applications for dielectrophoresis is the selective trapping and fractionation in lab-on-a-chip devices. Nevertheless, many-particle effects due to high concentrations of biological material around electrodes can cause a rapid decrease of trapping efficiency in ... Read More
Magnetorheological Elastomers (MREs) are a composite that consist of magnetic micrometer sized particles suspended within rubber matrix filler. By placing this material within an external magnetic field during the rubber curing process, the poles of the particles are forced to align and ... Read More
A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss ... Read More
The Scanning Field Emission Microscopy (SFEM) is a novel technology similar to the better known Scanning Tunneling Microscopy (STM). In STM, electrons are exchanged between the outermost atom of a sharp tip and the outermost atom of a target over sub-nanometer distances by means of the ... Read More
Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor / magnetic material configuration, using FEA software to calculate the resulting field, modifying the configuration, and iterating to produce the desired field. Our method involved solving the ... Read More
Very recently, the synthesis and experimental study of a new class of highly charged polymer particles has been described, which spontaneously charge in non-aqueous low-polarity solvents [1,2]. These suspensions are an example of what is known as salt-free systems. The study of ... Read More
Introduction Throughout the field of micro- and nanoscale electrokinetics, floating bipolar electrodes (BPEs) have proven to be useful in manipulating charged ionic species and biomolecules for electroanalytical studies. The growing use of integrated electronics in working towards fully ... Read More
