See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Understanding the air flow patterns and aerosol trajectories in ventilated rooms can provide key information for determining where to place early warning and monitoring instruments, and how to minimize hazardous materials in the worker’s breathing zone. The dispersion within rooms can be ... Read More
COMSOL Multiphysics was used to simulate the heat flux from battery cells via conjugate heat transfer physics which consist of laminar flow and heat transfer in solids and fluids. Laminar flow function was used to simulate natural convection of air within the sealed enclosure. Heat ... Read More
Adaptive optics control using liquid filled membrane lens is based on the principle of deflection of polymeric membrane. Controlled deflection in membrane leads to controlled focal length. This enhances the focus tuning ability of the system at the same time make optical system compact ... Read More
The advent of Micro/Nano fluidic technologies has enabled researchers from various fields to use these advancements for analysis and experiments. In this work we present such a device that can be used for analyzing coagulation of blood in a microchannel by measuring the displacement of ... Read More
In recent times, the major concern in the area of microelectronics is efficient heat transfer which will improve the operating characteristics of the device as well as minimize its failure rate due to induced overheating. The removal of excess heat from the system can be done by ... Read More
Introduction Throughout the field of micro- and nanoscale electrokinetics, floating bipolar electrodes (BPEs) have proven to be useful in manipulating charged ionic species and biomolecules for electroanalytical studies. The growing use of integrated electronics in working towards fully ... Read More
Based on the heat transfer and seepage theory in porous media, a 2D cross section of a horizontal AGF project is selected and a numerical model is set up, which is based on full coupling of temperature and flow fields by combining physical interfaces of Darcy's Law and Heat Transfer in ... Read More
The confinement clean rooms used in industry are susceptible to higher count of particles per cubic meter of air after the usual work program. To decrease the economic and technological effects of particle concentration a micro-cleaning device was elaborated. A first approach of a 3D ... Read More
COMSOL Multiphysics® software was used in this study to simulate mixing by diffusion and by secondary flow. Particle tracing model was applied to simulate the mixing of cells in the microchannel. Results agreed well with the measurement, an optimal herring-bone structure was proposed for ... Read More
The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the ... Read More
