Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Joule Heating in Electroosmotically Driven Circular Constriction Microchannel

U. Sanjay [1], P. Sarith[2], R. Ajith Kumar[1]
[1]Amrita Vishwa Vidhyapeetham, Kollam, Kerala, India.
[2]National institute of Technology, Calicut, Kerala, India.

Liquid transport in lab-on-a-chip (LOC) devices occurs through a microchannel that uses an electroosmotic flow actuation mechanism. This method has a plug-like velocity profile, which is ideal in species transport and in wall-bounded reactions. Under substantial joule heating, it is not possible to maintain a plug-like velocity distribution. My work investigates the effects of joule heating ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...

Heat Generation from H₂/D₂ Pressurization of Nanoparticles: Simulation of the Experiments on COMSOL Multiphysics®

A. Osouf[1], G. Miley[2], B. Stunkard[3], T. Patel[3], E. Ziehm[2], K. Kyu-Jung[3], A. Krishnamurthy[1]
[1]Department of Aerospace Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[2]Department of Nuclear, Plasma & Radiological Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[3]University of Illinois at Urbana - Champaign, Urbana, IL, USA

A COMSOL Multiphysics® model of our apparatus has been created in order to simulate the pressurizations of our nanoparticles by Deuterium. Using reference measurements during a cooling process, we calibrated the model so that its thermal aspects reflect the ones of our experimental set up. To reproduce the pressurizations, the following variables are parameters : the location of the heat ...

Particle Focusing Optimization and Stress Analysis of a Magnetic Horn

S. di Luise[1], A. Rubbia[2]
[1]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland and CERN European Organization for Nuclear Research, Geneva, Switzerland
[2]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland

A neutrino oscillation experiment aims to the observation of the transformation of a neutrino of a given flavour into a neutrino of a different flavour. A beam of neutrinos is produced through the decay of charged pions which in turn are produced in the collision of high energy accelerated protons impinging on a thick target. A series of magnetic horns is used to focus charged particles produced ...

Simulation of Rarefied Gas Flow in the KATRIN Source

L. Kuckert[1]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany

The KATRIN experiment at the Karlsruhe Institute of Technology (KIT) will measure the neutrino mass on a sub-eV range. Therefore the electron spectrum of the beta decay of Tritium will be detected and compared with a simulated spectrum of the used windowless gaseous Tritium source (WGTS). In the WGTS tritium is injected with 0.33Pa through small orifices in the middle of a 10m long tube with a ...

Towards Optimized Neural Stimulation in a Device for Urinary Incontinence

A.N. Shiraz[1], A. Demosthenous[1]
[1]E&EE Department, University College London, London, United Kingdom

After spinal cord injury (SCI) the functions of the lower urinary tract are often disrupted and may have fatal consequences for the patient. It has been shown that using a transrectal probe developed by Craggs et al., through conditional transrectal stimulation of pudendal nerve, it is possible to treat hyperreflexia in some of the SCI patients. To maximise the efficacy of this type of ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Cloud Computations for Acoustics with Coupled Physics - new

A. Daneryd[1], D. Ericsson[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]COMSOL AB, Stockholm, Sweden

For certain classes of scientific and technical computations the cloud may offer easily accessible, scalable, and affordable gigantic computing power. A power that for these classes may lead to a step change in model and analysis complexity compared to what is feasible with dedicated clusters and similar networked solutions. Acoustics with or without interaction with coupled physics fields ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

Modeling of Asphaltenes and Oil Shale Pyrolysis - new

J. P. Mmbaga[1], F. Munoz[2], S. Dhir[1], R. Gupta[1], R. E. Hayes[1], M. Toledo[2]
[1]University of Alberta, Edmonton, AB, Canada
[2]Departamento de Ingenieria Mecanica, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile

Pyrolysis is a key step in the conversion of carbonaceous materials into useful products. In this study, we investigate the pyrolysis of asphaltene and oil shale, both experimentally and numerically. COMSOL Multiphysics® software is used to model the combined effects of fluid flow in porous media, mass transfer of species, heat transfer, and reaction kinetics. Gas evolution and the porosity ...