Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Design and Analysis of Stacked Micromirrors

S. Park, S. Chung, and J. Yeow

University of Waterloo, Systems Design Engineering, Waterloo, Ontario, Canada

A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, and biomedical image systems. In this paper, two stacked micromirrors are presented and analyzed to show ...

Optics at the Nanoscale: Merging Nanoparticles with Light

Naomi Halas
Professor of Electrical and Computer Engineering, Chemistry and Bioengineering,
Rice University, Houston, TX, USA

Dr. Naomi Halas is currently Professor of Electrical and Computer Engineering, Chemistry, and Bioengineering at Rice University. She is the inventor of nanoshells, nanoparticles with optical resonances spanning the visible and infrared regions of the spectrum. She is co-founder of a company developing nanoshell-based cancer therapy. She is author of more than 150 refereed publications, more than ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

Extraction of Phenolic Compound from Grape Fruit. A Comparison Between a 3D FEM Model and Experimental Results

E. Madieta, I. Zouid, R. Siret, and F. Jourjon
Laboratoire GRAPPE, ESA, Angers, France

Fresh fruits and vegetables are gaining importance in the human diet because they contain many beneficial compounds. Among these compounds, phenols are of vital importance due to their antioxidant properties. It is well evident from previous researches that the skin of red grapes is considered a good source of phenols. The aim of this work is to simulate the extraction procedure of phenols in ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Bending of a Stented Atherosclerotic Artery

H.C. Wong[1], K.N. Cho[1], and W.C. Tang[1]

[1]Department of Biomedical Engineering, University of California, Irvine, California, USA

Atherosclerosis causes the deposition of plaque on the inner walls of arteries, which leads to restricted blood flow. Using the balloon angioplasty procedure, stents can be inserted and expanded in the atherosclerotic artery. We used COMSOL Multiphysics Structural Mechanics, Solid Stress-Strain module to perform static, large deformation analyses. Our results show that lower stent stresses were ...

Numerical Simulation of the Functional Electromagnetic Stimulation of the Human Femoral Bone using COMSOL

Y. Haba[1], W. Kröger[2], H. Ewald[2], R. Souffrant[1], W. Mittelmeier[1], and R. Bader[1]

[1]Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany

In the present study we determined the relative conductivities and permittivities of fresh cortical and cancellous bone measuring human femoral heads in different slices of 1 mm thickness. The identified conductivities of human trabecular bone are used for the electromagnetic field simulation by means of COMSOL using a Micro-Computed Tomography (Micro-CT) model. The calculated model depends on a ...

COMSOL Multiphysics® as a Tool to Increase Safety in the Handling of Acetylene Cylinders Involved in Fires

F. Ferrero[1], M. Beckmann-Kluge[1], and K. Holtappels[1]

[1]BAM Federal Institute for Materials Research and Testing Division II.1 “Gases, Gas Plants”, Berlin, Germany

In this paper a mathematical model for predicting the heating-up of an acetylene cylinder involved in a fire is presented. In the simulations polynomial functions were used to describe the temperature dependency of the thermal properties of the cylinder interior, which is a complex system composed by a solid porous material, a solvent and acetylene dissolved in it. Model equations covered heat ...

Numerical Evaluation of Long-Term Performance of Borehole Heat Exchanger Fields

A. Priarone[1], S. Lazzari[1], and E. Zanchini[1]

[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Alma Mater Studiorum - Università di Bologna, Bologna, Italy

The long-term performance of double U-tube Borehole Heat Exchangers (BHEs) is studied numerically by considering three different time-dependent heat fluxes exchanged between each BHE and the ground. Since the temperature distribution along the vertical direction has a negligible influence on long-term BHE performance, the problem is studied by means of a 2D conduction model, where the energy ...

Modelling of Melt Cast Cooling and Solidification Processes for Explosives

P. Lamy-Bracq[1] and C. Coulouarn[1]
[1]Nexter Munitions, Tarbes, France

A solidification process of casting explosives in shell is studied in this paper. An enthalpy method approach is used to model the solidification process. Both the thermal and mechanical effects are taken into account. An ALE (Arbitrary Lagrangian-Eulerian) method is used to represent the physical deformation due to solidification. Results from the model are verified against experimental ...