Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

基于 COMSOL 的 HVPE 法 GaN 单晶生长过程模拟

兰飞飞 [1],
[1] 中国电子科技集团公司第四十六研究所,天津,中国

利用 COMSOL Multiphysics® 软件中流体传热接口、层流接口、化学反应接口对 HVPE 法单晶生长过程进行模拟。建立了基于 HVPE 生长室内部结构的简单二维模型,并进行了标准的网格剖分,通过物理场耦合,并添加了生长过程中所需的生长气氛,研究了 HVPE 法进行 GaN 单晶生长过程中衬底表面厚度分布的变化规律。通过模拟结果发现,衬底表面存在显著的边缘效应,边缘处厚度显著高于衬底表面其它区域。

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams

M. Dossi [1], M. Brennan [1], M. Moesen [1],
[1] Huntsman Polyurethanes, Everberg, Belgium

Flexible and semi-rigid polyurethane foams are widely used as noise and vibration damping materials. Their porous random microstructure is composed of a visco-elastic frame structure with an interstitial fluid, normally air, filling the voids. The viscoelasticity of the foams is due to the polymer morphology in the foam skeleton structure, which can be adapted depending on application ...

Coupled Electromagnetics-Multiphase Porous Media Model for Microwave Combination Heating

V. Rakesh, and A. Datta
Dept. of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Although microwave heating has been studied in great detail, microwave combination heating has not. This work investigated this in a novel microwave combination system that heats the sample through a combination of microwaves and hot air. The study used a coupled electromagnetics-multiphase porous media model in COMSOL to determine the effect of combining different heating modes on heating ...

Simulation of Manufacturing Process of Ceramic Matrix Composites

S. Yushanov, J. Crompton, and K. Koppenhoefer
ACES of Columbus, LLC, Columbus, OH, USA

Improved performance of aeroengines requires the development of new manufacturing technologies for ceramic matrix composites (CMCs). This has been simulated using COMSOL Multiphysics. Specialized simulation technologies have been developed to describe the infiltration of molten material into a ceramic perform. The physical phenomena considered in the analysis includes: unsaturated flow, ...

Numerical Simulations of Spherical Gap Flows

K. Buehler, and J. W. Louw
University of Applied Sciences Offenburg, Germany

Rotating fluids are important in nature and technology. Many applications can be found in the field of meteorology and in rotating machinery. This investigation concerns the application of the swirl flow application mode in COMSOL Multiphysics to simulate nonlinear aspects of flows within spherical geometries. The results show the non-uniqueness of the supercritical solutions and ...

Using Perturbation Force Analysis for the Design of a Levitronc: an Application of Magnetic Levitation

Z. De Grève[1,2], C.Versèle[1], and J.Lobry[1]
[1]Faculty of Engineering, Mons, Belgium
[2]Belgian Fund for Research, F.R.S./FNRS, ResearchFellow, Belgium

The Levitron offers an interesting demonstration of natural magnetic levitation using permanent magnets. It is composed by a small magnetized top and a circular magnetized base with a hole on its center. The top is placed in an area where magnetic field configuration and gyroscopic torques allow the existence of a locus of stable equilibrium. In this paper, we intend to dimension and realize a ...

Ignition Process of Microplasmas

H. Porteanu, and R. Gesche
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin, Germany

Microplasmas at atmospheric pressure are required in many applications, where treatments in normal ambient, with spatial resolution, are important. The interest on such miniaturized sources has increased due to the availability of a new generation of microwave sources based on high power GaN transistors. The present work deals with a simulation of the plasma formation after the application of ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to ...

Wavebased Micromotor for Plane Motions (3-DoF)

G. Jehle, D. Kern, and W. Seemann
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

This paper proposes the design of a 3-Degree of Freedom(DoF) motor based on surface acoustic waves in elastic solids. The rotor is propelled by wave fields, for linear and rotational motion respectively, in the stator, that can be steered by the driving signal of the piezoelectric actuators, which are placed on an elastic plate. The next considerations concern the feasibility of the proposed ...

Active Infrared Technique for Landmine Detection: Numerical and Experimental Results

P. Fallavollita[1,2], S. Esposito[1,2], and M. Balsi[1,2]
[1]Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, “La Sapienza” University, Rome, Italy
[2]Humanitarian Demining Laboratory, Cisterna di Latina, Italy

Landmines are an open problem in many countries of the world. They cause injuriesand death and no technique proposed to date guarantees fast and 100% reliable detection alone. To this purpose, at the Humanitarian Demining Laboratory of “La Sapienza” University of Rome, several solutions are being studied. In this paper, numerical simulations of a prototype thermal detection system are reported, ...