Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

New Thermo-Mechanical Fluid Flow Modeling of Multiscale Deformations in the Levant Basin

M. Belferman [1], R. Katsman [1], A. Agnon [2], Z. Ben-Avraham [1],
[1] The Dr. Moses Strauss Department of Marine Geosciences, Leon H.Charney School of marine sciences. Haifa University, Mt. Carmel, Haifa, Israel
[2] Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel

The Levant has been repeatedly devastated by numerous earthquakes since prehistorical times. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component, in COMSOL Multiphysics simulation environment. The latter is modeled on a ...

Free Convection In A Square Cavity Partially Filled With Porous Media With Spatial Wall Temperature

A. I. A. Alsabery [1]
[1] Universiti Kebangsaan Malaysia (UKM), Malaysia

Free convective fluid flow and heat transfer in cavity domains has received considerable attention over the past few years and the importance of this problem is due to the broad spectrum of industrial applications and environmental situations. The aim of this study is to investigate the effect of Darcian free convective heat transfer in a square cavity partially filled with porous media with ...

Computational Analysis of Hydrodynamics and Light Distribution in Algal Photo-Bioreactors

V. Loomba [1], E. von Lieres [1], G. Huber [1],
[1] Forschungszentrum Jülich, Jülich, Germany

Microalgae can be directly used in health food or as biofilters for waste water treatment. They also have numerous commercial applications in cosmetics, aquaculture and chemical industry as a source of highly valuable molecules, e.g., polyunsaturated fatty acids, and they are increasingly recognized as a promising source for biodiesel production. To realize the full potential of microalgae, ...

Predicting Degradation of a Composite Material Due to an Injected Current

J. Rivenc [1],
[1] Airbus Group Innovations, Toulouse Cedex, France

The purpose of this study is to predict, with a multiphysics model, the degradation area of a composite material when a current is injected into the material. The main physical phenomenon is an exothermic reaction, with an irreversible nonlinear variation of the electrical conductivity. The strategy is presented, in order to perform a computation that correctly takes the physics into account. In ...

Transient Diffusion Modeling of Methane Plume and Source Localization

S. K. Nayaka[1],, S. Roya [1],, K. Ghosha [1],, S. Aroshb [2],, S. Prakashb[2],, S. P. Duttaguptaa [1][2]
[1] Center for Research in Nanotechnology and Science, IIT Bombay, Mumbai, Maharashtra, India.
[2] Dept. of Electrical Engineering, IIT Bombay, Mumbai, Maharashtra, India.

Methane detection and quantification is of great importance due to its natural abundance, potential to cause explosions and known greenhouse effect. Leak detection and concentration monitoring at source is highly challenging as CH4 is odorless and colorless. This can be performed mounting sensor network over a potential diffusion area. It requires optimal positioning of those sensor nodes to ...

Simulation of Auxin Accumulation and Transport in a Plant Root

M. A. Akhmanova [1], M. Fendrych [1], J. Friml [1]
[1] Institute of Science and Technology Austria, Klosterneuburg, Austria

Plant roots have an outstanding ability to grow in the direction of gravity or nutrients. Bending of the root tip in the preferred direction is achieved by asymmetric cell growth on the opposite sides of the root, dictated by asymmetrical distribution of the hormone auxin. Increase in auxin concentration inhibits elongation of cells, whereas decrease in auxin concentration stimulates elongation. ...

基于 COMSOL 软件的硅通孔的多物理场分析

刘永磊 [1],
[1] 西安电子科技大学北校区机电工程学院,西安,陕西省,中国

硅通孔在实现高级集成系统中起着至关重要的作用,但是其发展受到多物理场耦合效应的极大阻碍。硅通孔的多物理场耦合过程非常复杂,热场分布、电磁场分布及结构分布是相关联、相互作用的。针对硅通孔的多物理场耦合问题,本文开展了硅通孔多物理场仿真分析研究。结合国内外在硅通孔多物理场本质研究的基础上,从多物理场耦合理论出发,建立单个硅通孔的多物理场分析模型。通过运用 COMSOL Multiphysics 软件进行建模如图 1,在稳态下选择相应的焦耳热和热膨胀接口进行仿真如图 2,经影响分析确定了硅通孔的一些结构参数,如二氧化硅隔层厚度取 0.8um,硅基质厚度取 5.5um,硅通孔高度取 83.6um。最后,选择焦耳热接口进行瞬态仿真,研究了电压周期函数的幅值大小和占空比对硅通孔温度变化的影响关系。数值结果表明,随着幅值的增大,最终稳定后,温度的波动范围和最高温度都将增大如图 3;随着占空比不断增大 ...

脉冲直流等离子体射流中 OH 自由基的生成机理

徐茂源 [1],
[1] 中国湖北省武汉市华中科技大学

我们分别使用一个 2D 等离子体射流模型和一个 1D 放电模型来研究了脉冲等离子体射流中 OH 自由基的产生机理。对处于空气环境下的等离子体射流,我们发现产生 OH 自由基的反应主要有 H2O 的电子碰撞电离,H2O+ 的电子中和以及 H2O 被 O(1D)分解。其中 H2O 的电子碰撞电离所占比例最大。工作气体中额外的 N2,O2,空气和 H2O 使得管外的 OH 自由基密度有了少量提升,这也是由Penning电离产生的更多的电子引起的。另一方面,所增加的 O2 和 H2O 也大大增加了管内 OH 的密度,这分别是由于O(1D)浓度和 H2O 浓度的上升。在脉冲关闭时,气流将会把大量的 OH 自由基输送出管道。结果还表明脉冲数可以有效的控制等离子体的化学反应。所得实验结果得到了由激光诱导荧光测量的支撑,也同大气压等离子体在医疗、医药和材料加工行业的多种应用有关。

Numerical and Experimental Analysis of Natural and Mixed Convection Heat Transfer for Vertically Arranged DIMM

G. Petrone, and G. Cammarata
University of Catania, Catania, Italy

 It is commonly recognized that careful thermal design of electronic equipments represents an unavoidable pre-production step in order to ensure reliability and performance of those components during their functioning. This paper mainly concerns a comparison between experimental and numerical results obtained in studying thermal dissipation in natural and mixed convection conditions for RAM ...