Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to ...

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]

[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by pure H2O. We considered a 1-D geometry and we developed a dynamic model that presents a clear interface ...

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics®

F. Yilmaz[1] and B. Karasözen[2]

[1]Department of Mathematics, Gazi University, Ankara, Turkey
[2]Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

We use COMSOL Multiphysics® for solving distributed optimal control of un- steady Burgers equation without constraints and with pointwise control constraints. Using the first order optimality conditions, we apply projection and semi-smooth Newton methods for solving the optimality system. We have applied the standard approach by integrating the state equation forward in time and the ad- joint ...

Numerical Investigation of a Time-dependent Magnetic Actuation Technique for Tagging Biomolecules with Magnetic Nanoparticles in a Microfluidic System

A. Munir, J. Wang, Z. Zhu, and H.S. Zhou
Worcester Polytechnic Institute, Worcester, MA, USA

The magnetic body forces that act on mono-dispersed magnetic nanoparticles (MNPs) tagged biomolecules in a microfluidic system can be efficiently used in various applications that involve separation and detection including DNA and protein analysis, bio-defense, drug delivery, and pharmaceutical development. In this work, we report an FEM model to demonstrate a novel method of tagging ...

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and nano- scale since it diminishes the high performance of MEMS devices. For instance, depending on the stiffness ...

MEMS Comb Drive Gap Reduction Beyond Minimum Feature Size: A Computational Study

N. Osonwanne, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to reduce the comb drive gap in micro electro mechanical systems (MEMS) beyond the minimum fabrication feature size. The benefit of reducing the gap space between comb drive fingers is to increase its sensitivity to changes in capacitance due to displacements. The minimum feature size of standard fabrication foundries is 2 microns. To reduce the gap beyond a ...

Smoothing the Path to Simulation-Led Device Design

B. Pryor, and R. Pryor
Pryor Knowledge Systems
Bloomfield Hills, MI

Using modeling software such as COMSOL Multiphysics during the design phase, an approach called “simulation-led design”, allows ideas to be both inspired and validated by the use of simulations. Then, using simulations after the product is designed can shorten the prototype-testing portion of the development process and reduce its cost. This paper provides specifics on the nature of the ...

Benchmark of COMSOL vs. ROXIE Codes for the Calculation of a Particle Accelerator Quadrupole

I. Rodriguez, and J. L. Munoz
ESS Bilbao
Bilbao, Spain

The field quality requirements of most particle accelerator magnets are very tight and, therefore, very precise simulations are needed to accurately calculate these devices. CERN\'s ROXIE code is widely used as a reference software to calculate normal conducting and superconducting magnets for particle accelerator applications. ROXIE uses the full vector potential coupled to the BEM-FEM ...

Multifunctional Fluid Power Components using Engineered Lattice Structures

S. Newbauer, D. Cook, and D. Pettis
Milwaukee School of Engineering
Milwaukee, WI

Designing a component with multiple functions, e.g. load bearing and noise attenuation, can increase the effectiveness of each component and reduce the complexity of the overall system, thereby improving system efficiency as well. Current multifunctional components include metal foam. It is posited that the cellular pores of the metal foam can be engineered and optimized for desired ...