Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Gas Injection with the Level Set Method

J. E. Rivera-Salinas [1], A. Cruz-Ramírez [1]
[1] National Polytechnic Institute - ESIQIE, Department of Metallurgy and Materials, Mexico

The physical mechanisms that operate in gas injection are complex, since the bubble formation at submerged orifices involves a wide range of length and time scales, bubble coalescence occurs, rapid pressure variations around the gas bubble produce the wobbling of the bubble, as well as the high velocities involved in the bubble bursting phenomenon on the free surface, among the others. In this ...

Simulation of Electro-Thermal Behavior of an Overlap Solder Interconnection

A. Koushki [1],
[1] Rostock University, Rostock, Germany

Solder connections are one of the most essential parts of the PCBs. Despite many well-known scientific works that have been done about overlap solder interconnection properties, such as fracture, fatigue and reliability studies, little attention have been given to the investigation of the connection between effects of electrical properties and laboratory soldering shortages such as effects of ...

Optimization of Drying Step to Obtain Large, Transparent Magnesium-Aluminate Spinel Ceramics

J. Petit [1], L. Lallemant [1],
[1] ONERA, Chatillon, France

To obtain large transparent ceramic samples, we optimized the drying step process using COMSOL Multiphysics®. Indeed, green body's drying in a climate chamber is the critical step when large size and complex shape samples are needed. Then we obtained 75 mm diameter and 10 mm thickness highly transparent spinel ceramics.

Radio Frequency (RF) Thawing Irregular Shape Frozen Beef — A Computational Study

Yang Jiao [1], Yulin Li [1], Yifen Wang [1]
[1] Shanghai Ocean University, Engineering Research Center of Food Thermal-processing Technology, Shanghai, China

Imported beef often comes in halves or quarters of frozen bodies, which are irregular. Radio frequency (RF) heating can reduce processing time and minimize nutritional damage when applied in meat thawing. Because of its large penetration depth and high heating rate, RF thawing has a great potential for rapid thawing and heating uniformity improvement. The purpose of this study was to explore the ...

FEM Analysis of Micromachined Flow Sensor with Wheatstone Bridge Read-out

A. Talic[1], S. Cerimovic[1], F. Kohl[1], R. Beigelbeck[1], F. Keplinger[2], and J. Schalko[1,2]
[1]Research Unit for Integrated Sensor Systems, Austrian Academy of Sciences, Wr. Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

In this work, we present simulations of a novel micromachined calorimetric flow sensor using COMSOL Multiphysics. The sensor is based on four germanium thermistors that serve as heat sources and as temperature sensors simultaneously. In operational mode, the heated membrane is cooled by any passing flow and the local cooling rate depends on the flow velocity. The simulation results demonstrate ...

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning

G. Cammarata, and G. Petrone
Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational conditions, are principally produced as temperature and velocity distributions. Special attention is paid to the ...

Durability Analysis on Solar Energy Converters Containing Polymeric Materials

J. Wirth, S. Jack, M. Köhl, and K.-A. Weiß
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

The key issues of the Fraunhofer Institute for Solar Energy Systems are research and development of solar technologies for the fast growing market of solar energy. This paper presents examples of the usage of COMSOL Multiphysics: The ingress of water is a serious reason for the degradation of photovoltaic modules which can hardly be measured using experimental approaches yet. Therefore, a ...

Analysis of the Acoustic Response of a Railroad Bridge

K. Koppenhoefer[1], S.Yushanov[1], and M.H. McKenna[2]

[1]AltaSim Technologies, LLC, Columbus, Ohio, USA
[2]U.S. Army Engineering Research and Development Center

Aging infrastructure requires frequent inspections to assess their structural integrity. However, the large amount of existing infrastructure, and the distance between these structures present significant challenges to inspectors. Acoustics-based technologies represent a simple, and relatively inexpensive, technique to monitor the integrity of a structure. To develop these techniques, designers ...

Negative Thermal Expansion Materials: Thermal Stress and Implications for Composite Materials

M.J. Jakubinek[1,2], C.A. Whitman[2,3], and M.A. White[1,2,3]
[1]Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada
[3]Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada

There is considerable interest in the possibility of combining NTE materials with normal (positive) thermal expansion materials, to reduce the potential of failure of a material or component due to thermal stress fracture. Finite element analysis (FEM) is used to explore the overall expansion and thermal stress in composites.

Microstimulation in The Brain: Does Microdialysis Inuence the Activated Volume of Tissue?

D. Krapohl[1][3], S. Loeffler[2], A. Moser[2], and U.G.Hofmann[1]

[1]Institute for Signalprocessing, University of Luebeck, Lübeck, Germany
[2]Institute for Neurology, University of Luebeck, Lübeck, Germany
[3]Department of Information Technology and Media, Mid Sweden University, Sundsvall, Sweden

Deep Brain Stimulation (DBS) has been established as an effective treatment for Parkinson's disease and other movement disorders. The stimulation is currently administered using tetrode-macroelectrodes that target the Subthalamic Nucleus (STN). This often leads to side effects which bias the surrounding areas, e.g. the speech centre. Targeting a specific brain region can better be achieved with ...