Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Simulation of Flash Lamp Annealed Multilayers for Solid State Electrolyte Fabrication

C. Cherkouk [1], T. Nestler [1], M. Zschornak [1], T. Leisegang [1], D. C. Meyer [1],
[1] Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, Freiberg, Germany

All-solid-state batteries are among the next generation battery concepts that are currently being envisaged among both the international research community and industrial electronic vehicle producers. In addition to a long lifetime of more than several thousand cycles and intrinsic safety, applying solid electrolytes offers a high energy density due to larger electrochemical windows. Aluminum is ...

Use of COMSOL Multiphysics® Software for Physics Laboratory Exercises

H. van Halewijn [1],
[1] Fontys Hogeschool, Applied Physics, Eindhoven, Netherlands

COMSOL Multiphysics® is used to simulate thermal flow experiments at out University for Applied Physics. Students have to measure thermal flow problems and verify the measurements with detailed simulations. The desired accuracy is 5% or less. The presentation will cover 3 laboratory experiments: cooling of an Aluminum rod by natural convection, time dependent heat flow into a container with sand ...

Optimization of Device Geometry of a Fully-Implantable Hearing Aid Microphone

A. Dwivedi [1], G. Khanna [1],
[1] National Institute of Technology Hamirpur, Himachal Pradesh, India

The hearing impairment is affecting more than 360 million people all over the world.In India alone, 63 million people suffer from the significant auditory loss. Conventional hearing aids suffer from reliability, practicality and social stigma concerns. The totally implantable devices provide freedom from the social and practical difficulties of using conventional hearing aids. The paper presents ...

Stress and Strain of Film on Deformed Polymer–metal

Guibang Cao [1], Xiaolan Xiao [1],
[1] GuangDong university of technology, Guangzhou, China

Polymer–metal is a kind of new composite materials rather than traditional metal packaging materials. It has both features of polymer film and sheet metal. However, the polymer film will damage in the sheet metal forming process. Therefore, we try to established a sheet metal forming model with punch and die in the study, based on solid mechanics module of COMSOL Multiphysics® software. We ...

Simulation of an Impulse Arc Discharge in Line Lightning Protection Devices

A. Chusov [1], E. Rodikova [2], D. Belko [1],
[1] Streamer Electric Inc., Saint Petersburg, Russia
[2] Streamer Electric Inc. and Saint Petersburg State University, St. Petersburg, Russia

Line lightning protection devices (LLPD) nowadays are widely used for lightning protection of overhead power lines. LLPD is composed of electrodes in series embedded in silicone rubber which all together forms sequence of spark gaps. When lightning overvoltage is applied it causes electrical breakdown in every spark gap. From this point spark gap starts to operate as discharge chamber, ...

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications

J. S. Crompton [1], L. Gritter [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Small-scale plasma jets in atmospheric air can produce regions of highly reactive chemistry coincident with temperatures approaching room temperature allowing his type of cold plasma jet to be used for decontamination of surfaces and sterilization of living tissue. In the device under consideration in this work, atmospheric pressure air is forced through a hollow anode and cathode. Immediately ...

Residual Stresses in a Panel Manufactured Using EBF3 Process

J. Gaillard[1], D. Locatelli[2], S. Mulani[3], and R. Kapania[3]
[1]Microelectronics and Micromechanics Department, Engineering school of ENSICAEN (Ecole National Superieure d'Ingénieurs de Caen), Caen, France
[2] Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
[3] Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

The residual stresses developed in a stiffened panel manufactured using Electron Beam Freeform Fabrication (EBF3) process were studied. EBF3 process is a layer additive process that can be used to build near-net shaped parts directly using computer controlled techniques, which can be used for aerospace structures. A COMSOL model was created to simulate the residual stresses using a thermo ...

Simulation of Topology Optimized Electrothermal Microgrippers

O. Sardan[1], D. Petersen[1], O. Sigmund[2], and P. Boggild[1]
[1]DTU Nanotech, Denmark
[2]DTU Mechanical Engineering, Denmark

In this work, electrothermal microgrippers designed using topology optimization are modeled. The microgrippers are composed of two 5 μm-thick polysilicon actuators facing each other. The gap between the actuators are 2 μm in the initial state and the microgrippers are able to both fully close and further open this gap. The operation principle of the actuators is quite similar to that of a ...

Analysis of the Mechanical Behavior of Violins Based on a Multi-physics Approach

E. Ravina
Dept. of Mechanics and Machine Design, Research Centre on Choral and Instrumental Music (MUSICOS), University of Genoa, Italy

The paper attempts to give a contribution to the dynamic analysis of musical instruments. A multidisciplinary approach oriented to the study of mechanical, structural, vibratory and acoustical phenomena related to stringed instruments is discussed. The case study focused in this paper concerns the violins family: the geometry and the vibratory propagation of this instrument is very complicated ...

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

N. Petra[1], and M.K. Gobbert[1]

[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

The graphical user interface (GUI) of COMSOL Multiphysics offers an effective environment to get started solving problems. For reproducibility of the results, it is often desirable to explore the script-based modeling capabilities of COMSOL with MATLAB. There are also potential benefits of running COMSOL in parallel, specifically by running several computational threads in shared-memory ...