See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Possible drawbacks of microreactors are inefficient reactant mixing due to the predominance of laminar flow and clogging (when solid-forming reactions are performed or solid catalyst suspensions are used). Ultrasound has been successfully implemented not only to prevent these problems ... Read More
Dielectric heating is an important, widely employed electromagnetic heating technology utilized by consumers, small businesses and industry. This model is used to explore the physical differences manifested when different frequencies are utilized to execute the heat generation process on ... Read More
Measurement of three dimensional, three component velocity fields is central to the development of effective micromixers for bioassays and lab-on-chip mixing applications. We present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image ... Read More
The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment ... Read More
The goal of a tokamak is to use high magnetic fields to contain plasma and produce nuclear fusion that can be used for power generation. MIT’s Plasma Science Fusion Center (PSFC) and collaborators are proposing a machine, the Advanced Divertor eXperiment (ADX) to test new technology for ... Read More
The Fischer-Tropsch Synthesis (FTS) is a highly exothermic condensation polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, the latter of which is often called syncrude. Multi-Tubular Fixed ... Read More
The extraordinary electromagnetic response of nanostructured material, usually made up of a metallic structures distributed in within a dielectric matrix has attracted a lot of interest in recent years. These materials are technically called metamaterial (MM) since they possess ... Read More
Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, ... Read More
In the early 1920’s, Gas-To-Liquids (GTL) and Coal-To-Liquids (CTL) technologies were developed to account for the depleting crude oil resources [1]. During this period, Franz Fischer and Hans Tropsch developed a process to convert synthesis gas (syn gas), derived from coal ... Read More
Introduction Velocity profiles in liquid films flowing over rotating conical surfaces are of considerable interest in industry. The efficiency of important process equipment, such as spinning cone columns, fluid degassers, centrifugal disc atomizers, centrifugal film evaporators, and ... Read More
