Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
Search Term: hackert

Transient Simulation of the Removal Process in Plasma Electrolytic Polishing of Stainless Steel - new

I. Danilov [1], M. Hackert-Oschätzchen [1], I. Schaarschmidt [1], M. Zinecker [1], A. Schubert [1],
[1] Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany

Plasma electrolytic polishing (PeP) is an electrochemical method for surface treatment. In detail PeP is a special case of anodic dissolution [1] that unlike electrochemical polishing requires higher voltage and uses environment friendly aqueous solutions of salts. When the process starts, the anode is covered with a plasma-gas layer. During processing, the surface of the workpiece becomes ...

Simulation of the Shape of Micro Geometries Generated with Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1,2]
[1]Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute of Machine Tools and Forming Technology, Chemnitz, Germany

Electrochemical Machining with a closed electrolytic free jet is a special procedure to generate complex micro structures by help of anodic dissolution. The work piece shape is fabricated by supplying an electrolytic current through an electrolyte jet ejected from a small nozzle. In this study COMSOL Multiphysics is used to simulate the electric current density in the jet and the dissolution ...

Investigating the Influence of Dynamic Jet Shapes on the Jet Electrochemical Machining Process

M. Hackert[1], G. Meichsner[2], S.F. Jahn[1], and A. Schubert[1]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology Chemnitz, Germany

Electrochemical Machining is a potential procedure for micro manufacturing technology. Especially the absence of machining forces makes it advantageous for processing metals with high hardness and for the generation of complicated geometries. Applying a closed electrolytic free jet (Jet Electrochemical Machining - Jet-ECM) the electric current is restricted to a limited area. That allows working ...

Single Discharge Simulations of Needle Pulses for Electrothermal Ablation

M. Hackert-Oschätzchen[1], M. Kreißig[1], M. Kowalick[1], H. Zeidler[1], A. Schubert[1], O. Kröning[2], M. Herzig[2], H.-P. Schulze[3]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Leukhardt Schaltanlagen Systemtechnik GmbH, Magdeburg, Germany
[3] Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

Within this study a model of a single discharge of micro scale EDM was developed in accordance with Schulze et al [1]. The specific computation of the growth of the plasma channel has been derived from this literature. Applying COMSOL Multiphysics® a pseudo 3-D geometry was created based on the literature data. Afterwards the thermal heat transfer in solids was defined as well as the parameters ...

Numerical Investigation of Electrolyte Flow in a Multi-Cathode System for Electrochemical Machining - new

M. Penzel [1], I. Schaarschmidt [1], M. Hackert-Oschätzchen [1], A. Schubert [1],
[1] Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany

Manufacturing and finishing of components with complex internal features is a significant challenge. Industrial sectors like automotive industry, aeronautics or medical technology require these internal features with highest precision and repeatability. Such components are often machined in temporarily and locally separated manufacturing processes. Due to these separate processes, form ...

Approximation of the Flow Field in Electrochemical Machining Incorporating Pressure Drop Calculation

R. Paul [1], M. Zinecker [1], M. Hackert-Oschätzchen [1], A. Schubert [1],
[1] Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany

Electrochemical Machining (ECM) is a non-conventional machining technology which allows for surface structuring and shaping of metallic workpieces with high accuracy and surface quality. The machining principle of ECM is electrolysis. Hence, the mechanical properties of the workpiece material do not directly influence the machining process. Thus, even very hard materials can be machined with ...

Multiscale Model of the PECM with Oscillating Cathode for External Geometries Using a Virtual Switch

I. Schaarschmidt [1], M. Zinecker [1], M. Hackert-Oschätzchen [1], A. Schubert [1], G. Meichsner [2],
[1] Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

The machining of hardened steel or powder metallurgical steel, for example to manufacture impact extrusion punches, is a big challenge for conventional machining technology as milling or turning. A non-conventional machining technology is Electrochemical Machining (ECM), which allows surface structuring and shaping of metallic workpieces with high accuracy and surface quality without wear of ...

Simulation-based Analysis of a Microstructuring Process for Serrated Surfaces with Higher Friction - new

I. Schaarschmidt [1], M. Hackert-Oschätzchen [1], G. Meichsner [2], M. Zinecker [1], P. Steinert [1], A. Schubert [1, 2],
[1] Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Actual trends in lightweight construction and safety-relevant technologies cause an increasing demand for reliable design of joining connections. Increasing power density and compact design require dimensioning of joints with low safety factors. Thereby additional security measures are needed more often. One possible measure is increasing the friction coefficient of serrated fasteners by ...

Pseudo-3D Multiphysics Simulation of a Hydride Vapor Phase Epitaxy Reactor

M. Hackert-Oschätzchen[1], M. Penzel[1], P. Plänitz[2], A. Schubert[1][3]
[1]Chemnitz University of Technology, Chemnitz, Germany
[2]GWT-TUD, Dresden, Germany
[3]Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany

Gallium nitride (GaN) and its related nitride alloys with special physical properties are in technical areas of high interest. The growing of gallium nitride boules on non-native sapphire or silicon carbide requires complicated mechanisms of defect reduction in the lattice structure. Thus the production of gallium nitride substrates is a challenge. Hydride Vapor Phase Epitaxy (HVPE) is a ...

2D Axisymmetric Simulation of Pulsed Electrochemical Machining (PECM) of Internal Precision Geometries

M. Hackert-Oschätzchen [1], M. Kowalick [1], R. Paul [1], M. Zinecker [1], D. Kuhn [1], G. Meichsner [2], A. Schubert [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

This study presents investigations on a developed process design for manufacturing internal precision geometries by pulsed electrochemical machining (PECM) with help of multiphysics simulations. Therefore, a 2D axisymmetric transient model was created. The considered physical phenomena are fluid dynamics, thermodynamics, electrodynamics, the formation and transport of hydrogen as well as ...