Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling and Simulation of Simultaneous Intrinsic Kinetics, Hydrogen Transport and Heat Transfer in Complex Hydride Hydrogen Storage Systems

G. A. Lozano, J. M. Bellosta von Colbe, T. Klassen, and M. Dornheim
Institute of Materials Research
Materials Technology
Helmholzt-Zentrum Geesthacht
Geesthacht, Germany

In proper designs of hydrogen storage systems based on metal hydrides three processes are modelled and simulated: hydrogen flow (through the metal hydride bed), solid-state chemical transformation, and heat transfer (due to the highly exothermic chemical transformation). In this work, modelling and simulation of the hydrogenation in complex hydride tanks is performed using COMSOL, case study is ...

Development of Mathematical Model for Determining Sound Reduction Index of Building Elements

J. Ratnieks, A. Jakovics, and J. Klavins
University of Latvia
Riga, Latvia

Although we know the physics inside a media where the sound waves propagate, determination of material\'s or structure\'s sound reduction index is not an easy task. The lack of good engineering solutions proves the point. The only reliable way to calculate the sound reduction index is to carry out an experiment.Therefore, the aim of this study is to develop a mathematical model that can ...

Modeling Spectral Emission Phenomena in Beryllium Plasma Using COMSOL Multiphysics

C. Gavrila[1], C. P. Lungu[2], and I. Gruia[3]
[1]Technical University of Civil Engineering Bucharest, Romania
[2]National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
[3]University of Bucharest, Faculty of Physics, Bucharest, Romania

The purpose of this paper is to present a numerical modeling of plasma phenomena in beryllium emissions using COMSOL Multiphysics software. The Beryllium films were deposited on mirror polished fine grain graphite substrates using the Thermionic Vacuum Arc (TVA) technology available at NILPRP – Magurele, Romania. The developed system for thin film deposition using thermionic vacuum arc (TVA) ...

Advanced Multiphysics Actuation Model of Ionic Polymer-Metal Composites

D. Pugal[1], K. Kim[1], and A. Aabloo[2]
[1]ME Department, University of Nevada Reno, Reno, NV
[2]University of Tartu, Tartu, Estonia

Modeling electromechanical actuation of ionic polymer-metal composite (IPMC) material is considered in this work. Ionic current in the polymer is described with the Poisson-Nernst-Planck system of equations. Calculated ionic concentration is related to the deformation of the material. To include the effect of the electrodes, the ionic current and the electric current in the electrode domains is ...

Solution of Inverse Thermal Problem for Assessment of Thermal Parameters of Engineered H2 Storage Materials

I. Fedchenia, and B. van Hassel
United Technologies Research Center
East Hartford, CT

Materials based H2 storage systems for light duty vehicles need to meet challenging performance targets that have been developed by the FreedomCAR and Fuel Partnership. On-board reversible metal hydrides are typically integrated with heat transfer surfaces, e.g. in fin and tube heat exchangers, in order to reject the heat of H2 absorption at a high rate which is set by the refueling time ...

Dynamic Multi-Phase Modelling and Optimisation of Fluid Jet Polishing Process

A. Beaucamp[2], R. Freeman[2], and Y. Namba[1]
[1]Chubu University, Kasugai, Japan
[2]Zeeko Ltd, Coalville, UK

In the Fluid Jet Method, a polishing fluid is compressed and delivered through a nozzle, allowing the spot area to become continuously replenished with abrasives and coolant. Process parameters include: Abrasive type and concentration, Inlet pressure, Nozzle diameter, Impingement angle, Surface feed of spot. The simulation uses COMSOL’s turbulent 2-phase flow model, with the incompressible ...

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]
[1]OSRAM SYLVANIA, Beverly, MA, USA

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

Visible Spectral Reflectance Analysis in a Metal-Insulator-Metal (MIM) Multilayer with COMSOL Multiphysics

Y. Oshikane[1], K. Murai[1]
[1]Osaka University, Suita City, Osaka, Japan

We are developing a reflective metal-insulator-metal (MIM) filter with narrow band absorption. In the MIM structure, the interaction between subwavelength multilayer and visible light, and the resultant surface plasmon resonance (SPR) in specific illumination conditions must be understood. Such electromagnetic field interactions have been analysed using COMSOL Multiphysics and RF Module.

Sliding Performance of a Hyperelastic Seal

H. van Halewijn[1]
[1]Physixfactor, Nijmegen, The Netherlands.

A hyperelastic seal is pulled over a metal ring in a coffee machine for maintenance reasons. The force needed to pull the hyper elastic seal over the part is too high and should be reduced for maintenance reasons. Using the COMSOL Multiphysics® Structural Mechanics Module, and using the non-linear hyperelastic for the stick slip movement, a reliable simulation was generated. It resulted in an ...