See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Despite of the existing successful clinical applications, however, the interaction, i.e. artificial sensing, between the robot and the patient is still very limited. With the help of various cameras, vision is almost the only feeling that a robot can have. In order to imitate the human ... Read More
A model of a cell counter sensor based on Impedance Spectroscopy (IS) has been implemented in COMSOL Multiphysics. The cell counter is a silicon-based microdevice consisting in 3D electrodes placed in a wide microchannel: cells flow in the microchannel through the electrodes to be ... Read More
In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the application of ... Read More
Laboratories are essential parts of the engineering education at Universities of Applied Science. Students have the chance to practically apply theoretical concepts known from lectures. Sometimes the lab experiments require additional theoretical background. This is particularly true for ... Read More
Micromachined ultrasound transducers can work as a sensor or actuator for measuring fluid speed and direction, mixing and exciting particles (sonication), taking images (ultrasonography), non-destructive testing and many other purposes in various fields. In this work, a COMSOL ... Read More
This abstract introduces a sensor design for detecting angular acceleration in a single plane using thermal convection. The working principal of the device is based on probing temperature profile changes along a micro-torus caused by angular acceleration. By properly choosing the ... Read More
This paper presents ongoing research aimed at development of a MEMS magnetometer capable of nanoTesla sensitivity. Such a device would pave the way for inertial-grade MEMS IMUs. A resonant sensor is proposed, based on a Xylophone Bar sense element, and is analysed both directly and via ... Read More
This paper reports the design of a piezoelectric energy harvesting micro generator for an energy autonomous tire pressure monitoring wireless sensor node. For our design we use a piezoelectric MEMS generator approach without additional mass. The intrinsic mass of the cantilever is in the ... Read More
We report here on the use of the COMSOL emw (electromagnetic waves) module in the design of a microwave launcher. This launcher is to be used in a microwave Doppler sensor that is incorporated into a chemical looping combustion system. The launcher is designed in two steps. First, we ... Read More
Heat cancer therapy (HT) involves increasing tumor temperatures to 40-44°C and is a potent radiosensitizer for the treatment of solid tumors, including brain cancer. Current strategies to heat deep-seated targets in the brain are primarily invasive, and existing HT applicators do not ... Read More
