See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Simulated Thermal Response Test (TRT) data are analyzed in order to evaluate the effect of the tridimensionality model’s feature in determining the proper value of the soil thermal conductivity and borehole thermal resistance. The 3D system’s simulation during the TRT is ... Read More
Using 2D viscoelastic plane strain models we investigate the dependency of the stress field of slabs on geometry and kinematics of subduction zones (relative velocity of interacting plates and their absolute velocity with respect to the mantle). We conclude that the concentration of Von ... Read More
The Radiofrequency Heating (RFH) is widely employed to heat biological tissue in different surgical procedures. Most models analyze the RFH employing a Parabolic Heat Transfer Equation (PHTE) based on Fourier's theory. The PHTE can be used for problems involving long heating times or low ... Read More
With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses ... Read More
Reactive extraction of organic acids from an aqueous solution to an alkaline stripping fluid is based on a selective barrier allowing permeation of non-polar molecules, which subsequently react with the stripping agent. The shift from the organic acid to its base induced by the chemical ... Read More
This paper deals of a technology involved in the joining of thermoplastic composites, the resistance welding technology. This process takes advantage in the repeatable melting process for the thermoplastic resins. The process was numerically modeled to study the effect of the two main ... Read More
In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for ... Read More
In this paper a mathematical model for predicting the heating-up of an acetylene cylinder involved in a fire is presented. In the simulations polynomial functions were used to describe the temperature dependency of the thermal properties of the cylinder interior, which is a complex ... Read More
This work investigates the effects of boundary conditions on the species profiles in heterogeneous catalysis, with low Péclet systems. Hydrogen combustion in Helium was chosen because of the high diffusivities. Furthermore, already at T=300°C over a Pt catalyst, kinetics is ... Read More
Objective of this contribution is to present a procedure for evaluating second order drift forces on floating bodies, often the most important loading component for mooring design, in case of high waves propagating in relatively shallow water depths. The non linearity associated to this ... Read More
