See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
At the start of any automotive project, preliminary concept structures are generated which need to be analyzed in a fast and efficient manner. Concepts of different structural elements such as the chassis frame, cargo, Cross Car Beam etc. need to be optimized and front-loaded with ... Read More
Ball bearings are used in vast majority of mechanisms for space applications (such as Solar Array Drive Mechanisms, pointing mechanisms or reaction wheels) in order to provide low friction and smooth motion between parts. These applications differ from the ground ones due to space ... Read More
Investment casting is practised in both the automotive and aerospace industries, to produce casted components where a high-quality surface finish is critical. Vacuum induction melting (VIM) and direct pouring into an investment casting shell mould is an advantageous manufacturing ... Read More
ABSTRACT: Over the years, the most common method of preventing scale formation and blockage of formation pores in oil and gas systems is by squeezing of chemicals into the formation. Different experimental and simulation studies have been carried out to understand the interaction of the ... Read More
Within 40 years, percutaneous transluminal coronary angioplasty (PTCA) catheters evolved into the golden standard for treating coronary stenoses. However, navigating through tortuous vessel pathways and cracking highly calcified lesions is challenging. To minimize the risk of ... Read More
From the perspective of nonlinear silicon photonics, the strong light confinement in sub-micron sized silicon waveguides increases the effective nonlinearity. However, the high optical power density in the waveguide core also increase nonlinear absorption and hence the device self ... Read More
Contactless manipulation of microscopic objects through acoustic waves has proven an attractive solution for several applications over the past decades. This modality is particularly interesting for the manipulation of bio-particles (BPs) due to its relatively low intensities, capability ... Read More
The goal of this study was to simulate the collection efficiency curves of a Dekati-ELPI® cascade impactor. Seven of the twelve stages of the device in the lower range of deposition, D50 of 10 nm to 600nm, were simulated. “High Mach number flow; laminar & turbulent” and “particle ... Read More
This study is focused on the optimization of a- YBa2Cu3O7-x (YBCO) based bolometer working above 77 K. The temperature distribution on the superconductor surface and the temperature profile through the whole system (bolometer plus plate with heaters) were studied at the working point ... Read More
The axion is an excellent cold dark matter (CDM) candidate, originally proposed to solve the strong CP problem in strong interactions. A novel method to detect galactic axions is by using their conversion to electromagnetic waves from boundaries between materials of different dielectric ... Read More
