See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This paper presents the modeling and simulation results of wind velocities in urban areas. The main idea was to build random generated urban areas for studying the influence of different urban geometries, from relative open to more dense, on wind profiles. The Spalert-Allmaras turbulent ... Read More
In this paper an axisymmetric model of annular linear electromagnetic induction pumps using numerical methods and four approaches (two transient and two quasi-stationary) with different complexity is studied. Comparison of integral characteristics is performed between numerical ... Read More
One of the main parameters to consider during the nuclear waste storage design phase is the drum corrosion risk. The humid-air corrosion models available in literature predict that, for carbon steel, the phenomena start to become appreciable for relative humidity (RH) values close to ... Read More
The study of low Reynolds number flow around air vehicles of the order of centimeters. According to DARPA, a NAV is defined as a vehicle with 7.5 cm of length and weight of 20 grams. We calculated the flow around a small length scale 3D rigid body with complex geometry. Firstly we ... Read More
A simulation of an electrodynamic planar loudspeaker (EDPL) has been developed in this study with the COMSOL Multiphysics® software. Using the simulated model, effect of different parts has been studied to improve the performance. The locations of the coil and magnets have been obtained ... Read More
Evaporative cooling is a promising cooling method for dissipating high heat fluxes in high power density applications. One possibility to enhance heat flux is a generation of microstructures into the cooler surface. This enlarges the cooler surface and systematically affects the fluid ... Read More
This paper presents the design of an electron gun that could be employed for vacuum tubes operating in the THz range. In this context, vacuum tubes one of the main difficulties in the realization of THz vacuum tube is the design and the realization of the electron gun. Since the ... Read More
2D-modeling of arc welding in butt-joint configuration was performed in this study considering thermal-structural interactions. Thermal behavior was modeled in COMSOL Multiphysics® using the Heat Transfer Module with weld heat input as a Gaussian pulse whereas structural behavior using ... Read More
Previous research into acoustic omnidirectional absorber (AOA) has shown the feasibility of forming acoustic black hole to guide the incident wave into the central absorptive cavity. However, major restrictions to practical applications exist due to complexity of designing metamaterials ... Read More
Ohmic heating is a volumetric heating technology which can effectively process almost any pumpable fluid with extremely high energy efficiency (>95%). This is particularly useful for very thick fluids, those that burn on to hot surfaces and those with high solids content which would ... Read More
