See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
A 3D electro-conjugate heat transfer model was made to study an embedded microfluidic/TEG system (μF/TEG) system. An innovative embedded microfluidic/TEG system (μF/TEG) system is proposed which enables a device to be able to provide power to its cooling system eliminating external power ... Read More
Constitutive properties of living cells are able to withstand physiological environment as well as mechanical stimuli occurring within and outside the body. We examined fluid flow and Neo-Hookean deformation related to the rolling effect. A mechanical model to describe the cellular ... Read More
Prof. Jeng-Shian Chang received his B.Ec. degree (1974) in Mechanical Engineering from National Taiwan University, Taipei, Taiwan, and M.Sc. degree (1981) in Mechanical Engineering and M.Sc. degree (1983) in Computer Science both from Syracuse University, USA. In 1984 he received the Ph ... Read More
In an experimental nuclear fusion facility dust is generated both during normal machine operations and by macroscopic erosion of the plasma facing materials due to intense thermal loads. This dust can be mobilized by air ingress in case of LOVA (Loss of Vacuum Accident) threaten safety ... Read More
Using COMSOL Multiphysics® Acoustics Module: Chondrocytes modeled attached to a plane (to mimic in vivo constraints) are shown to resonate near 5MHz. At resonance, the mechanical energy density in the nucleus is two times higher than in the cytoplasm. Impact exercise is modeled as ... Read More
Metallic bipolar plates promise several advantages for fuel cell applications. On the other hand, cooling of these plates is a critical task regarding design optimization. The high thermal conductivity of the material and the complex geometry of these plates affect directly the cooling ... Read More
In our project, we propose an innovative software solution to the problem of electrical arcing risk prediction in high-voltage on-board electronic equipment intended for long-term self-contained use, e.g. in spacecraft conditions. It completely based on so-called “decomposition” approach ... Read More
Pulsed DC technology has led to the design of cost-effective deposition systems and to improved film properties, compared to conventional rf systems. In this work, a two-dimensional finite element model is used to investigate the high frequency pulsed DC discharges in nitrogen. The study ... Read More
Streamers are considered as main cause of electrical breakdown in air at atmospheric pressure. A streamer is an ionization wave propagating in neutral gas which is converted into low-temperature plasma behind its front. A streamer model is based on drift-diffusion approach where space ... Read More
The present study manifests the several ground breaking flow phenomena arising out of hydrodynamic interactions between two microorganisms swimming inside a microchannel with close proximity. The results theorized in the present investigation scrutinizes the varying behavior of the ... Read More