Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Structural Optimization of the AISHa Ion Source - new

F. Noto[1], M. Piscopo[1], L. Celona[1], D. Cittadino[1], S. Gammino[1], G. Cuttone[1], G. Gallo[1], G. Schillaci[1], C. Campisano[2], L. Lo Nigro[3], G. Costa[3], A. Campisano[4]
[1]Laboratorio Nazionale del Sud, Santa Sofia, Catania, Italy
[2]Gravina di Catania, Sicily, Italy
[3]Trinacria, Canalicchio, Catania, Italy
[4]Unico Informatica, li Battiati, Catania, Italy

Different facilities for hadrontherapy have been built in the recent past. AISHa ion source has been designed by keeping in mind the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. The study of some critical parts of the facilities: the ...

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism - new

E. Rawashdeh[1], A. Arevalo[1], D. Castro[1], I. G. Foulds[2], N. Dechev[3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of BC, Vancouver, BC, Canada
[3]University of Victoria, Victoria, BC, Canada

In this work we present the simulation of a micro-scale large displacement compliant mechanism called the Tsang suspension. It consists of a flat micro-plate anchored down by two springs on either side, that can rotate out-of-plane and maintain its vertical assembly by a simple single-axis actuation. COMSOL Mutliphysics® software was used to simulate these devices and extract the reaction forces ...

Numerical Evidence of Unrest-Related Electromagnetic Effects in the Campi Flegrei Caldera, Italy

G. Perillo [1], G. De Natale [2], M. G. Di Giuseppe [2], A. Troiano [2], C. Troise [2],
[1] University of Naples Parthenope, Naples, Italy
[2] INGV – Osservatorio Vesuviano, Naples, Italy

Electric, magnetic and electromagnetic (em) methods are widely used to monitor active volcanoes. A review of such applications is presented in Johnston (cit). Em signals were recorded in correspondence of numerous volcanic eruptions, for example in the case of the Mt. Unzen in Giapppone, of Merapi in Indonesia, Etna in Italy and during rapid deformation in Long Valley in California. ...

Finite Element Analysis of Pipes Considering the Effects of Stress Concentration Due to Dents

S.C. de Oliveira[1], E.P. de Deus[2], and A.M. Mont'Alverne[2]
[1] Funcap/CNPq, CE, Brazil
[2] Universidade Federal do Ceara, Fortaleza, CE, Brazil

This paper presents a numerical analysis of indented pipes based on the Finite Element (FE) within the framework of COMSOL Multiphysics. Numerical models using two-dimensional solid plane strain elements are evaluated. Geometric nonlinear analysis, nonlinear isotropic hardening material and contact were also incorporated into the models. The numerical models are calibrated by using an ...

Identification of the Complex Moduli of Orthotropic Materials using Modal Analysis

F. Van den Abeele[1], J.R. De Oliveira Jr.[2], and F.J. Huertos[1]
[1]OCAS N.V., J.F. Kennedylaan 3, Zelzate, Belgium
[2]Federal University of Minas Gerais, Belo Horizonte, Brazil

It is very difficult to measure the global properties of heterogeneous and anisotropic materials like composites and sandwich structures. When designing composite sandwich applications, the elastic properties are required to perform structural stiffness and strength calculations. However, due to their anisotropic nature, it is not straightforward to measure these properties with traditional ...

COMSOL Multiphysics® Software for Simulation of Surface Response to Excitation Method for Manufacturing Process Performance Monitoring - new

H. Fekrmandi[1], N. Miniello[1], R. Kiflemariam[1], I. Nur Tansel[1]
[1]Mechanical & Materials Engineering Department, Florida International University, Miami, FL, USA

In this study, COMSOL Multiphysics® software was used to simulate the surface response to excitation method (SuRE). An aluminum beam with a piezoelectric element bonded is modeled using the COMSOL Acoustics Module. A frequency domain sweep study was performed to simulate the sweep sign generation. The frequency spectrum of the structure is monitored through a frequency range of (20kHz-400kHz). A ...

Structural and Environmental Design of a Rainscreen System Using COMSOL Multiphysics

C. Guido Galante [1], M. Donà [2],
[1] Newtecnic Ltd, London, England, UK
[2] University of Cambridge, UK

The subject of the study is a bespoke rainscreen system designed for the Grand Theatre of Rabat, Morocco (Figure 1). The project presents a complex façade geometry and consists of a 1800-seat theater, an open-air amphitheater with a capacity of 7000 people, a rehearsal space and a restaurant. The rainscreen system consists of fiberglass individually cast reinforced concrete (GRC) panels ...

Residual Stress in the Silicon Membrane of Circular CMUT

A. T. Galisultanov [1], P. Le Moal [1], V. Walter [1], G. Bourbon [1],
[1] FEMTO-ST, Besanson, France

During last twenty years capacitive micromachined ultrasonic transducers (CMUT) have been developed extremely fast [1-2]. CMUT is an attractive alternative to traditional piezoelectric transducer, which converts electrical signal to mechanical vibration and vice versa. The main advantages of CMUT compared to most common solution: wide bandwidth (improved image resolution) and compatibility with ...

Modeling the Temperature-Dependent Dynamic Behavior of a Timber Bridge with Asphalt Pavement

B. Weber[1]
[1]Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

The fundamental frequency and the corresponding damping value are the main design parameters for footbridges against excessive vibrations induced by pedestrians. Since pedestrians typically walk at a pace of 1.6–2.4 Hz, this frequency range as well as the range of the second harmonic, namely 3.5–4.5 Hz, should be avoided. However it has been observed that the fundamental frequency of a bridge ...

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. ...