Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Modeling of Spring-Supported Thrust Bearings for Hydropower Applications

F.X. Borràs[1], J. Ukonsaari[2], A. Almqvist[1]
[1]Luleå University of Technology, Luleå, Sweden
[2]Vattenfall Research and Development, Luleå, Sweden

Spring-supported thrust bearings are used in huge rotor dynamic machines, generally to support the shafts from the biggest hydropower generators. Any attempt of modifying yhis type of thrust bearing implies huge investment and is associated with some risks. The goal of the present work is to predict the performance of spring-supported thrust bearings. With the model it is possible to carry out ...

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...

Micro Mechanical Exploration of Composites for Superior Properties

R. C. Thiagarajan, and K. V. Chiranjeevi
ATOA Scientific Technologies Private Limited
Bangalore, India

The predictive engineering of materials is matured from predicting properties from known morphology or constituents to engineering novel morphology for superior properties. The focus of this paper is about implementation of computational material mechanics modeling method in COMSOL Multiphysics software for engineering the constituents for superior properties. A brief review of property ...

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. Diminished flow over a prolonged period of time can cause permanent spinal damage. We constructed a 3D finite element model of the spinal cord to examine the role of compressive loading on spinal blood flow. It was found that the type of forces on the ...

Finite Element-Based Characterization of Viscoelastic Materials

X. Song [1], S. Dircks [1], D. Mirosnikov [1], B. Lassen [2],
[1] Mads Clausen Institute, SDU, Sønderborg, Denmark
[2] DONG Energy, Fredericia, Denmark

The objective of this study is to acquire a full characterization of a hyper-elastic material. The process is realized by performing a Dynamic Mechanical Analysis (DMA) with a viscoelastic material, which is extended by image processing algorithms in order to measure the changing distance of two dots in the direction of contraction. Due to the non-linear behavior of the material, the model ...

Thermomechanical Design of a Gas Turbine Reheat Combustor Experiment Using FEM Analysis with the COMSOL Multiphysics® Software

F. M. Berger [1], M. Eser [1], T. Sattelmayer [1],
[1] Lehrstuhl für Thermodynamik, Technical University of Munich, Munich, Germany

Enhanced operational flexibility and low levels of pollutant emissions are achieved with a sequential arrangement of premixed combustion stages in gas turbines for power generation. In the second – reheat – combustion stage, hot flue gases of approximately 1500K are enriched with fuel and establish a self-igniting flame – i.e. flame stabilization occurs mainly through auto-ignition. This work is ...

Fatigue Damage Evaluation on Mechanical Components under Multiaxial Loadings

R. Tovo[1] and S. Capetta[1]
[1]Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara, Italy

This paper is concerned with the fatigue behavior of complex, three-dimensional, stress concentrations under multiaxial loadings. Starting from the stress field obtained from a linear elastic analysis and taking advantage of the so-called implicit gradient approximation, an effective stress index connected with the material strength is calculated. Besides, this work summarizes a first ...

Determination of Fundamental Frequency of a Thin Rectangular Perforated Plate using COMSOL Multiphysics

S. V. N. B. Prasad, and B. Raghavendra

COMSOL Multiphysics 4.0 is being used to simulate the free vibrations of a plate. The results obtained by simulation in COMSOL are in close proximity to that found by Fast Fourier Transform analyzer and analytical method. As of now the vibration analysis of thin rectangular plates with perforations in rectangular pattern has been carried out. The study of vibration analysis of thin ...

Simulation of Bio-medical Waveguide in Mechanical and Optical fields - new

Y. Xin[1], A. Purniawan[1], L. Pakula[1], G. Pandraud[1], P. J. French[1]
[1]Technology University of Delft, Delft, Netherlands

This paper presents a freestanding waveguide to achieve the goal of detecting anastomosis leakage after colon surgery. The freestanding part is a thin membrane consisting of TiO2 rib and SiN ridge. This freestanding waveguide is designed both mechanically and optically to maintain mechanical stability during fabrication and detection process, and at the same time guarantee the detection ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...