Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Use of COMSOL Multiphysics® for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates

K. Howell[1], H. Georgiou[2], P. Petagna[3], G. Romagnoli[3]
[1]George Mason University, Fairfax, VA, USA
[2]Cyprus University of Technology (C.U.T), Limassol, Cyprus, EU
[3]CERN - The European Organization for Nuclear Research, Geneva, Switzerland, EU

The thermal management of silicon detectors and related electronics through micro-structured silicon cooling plates is gaining considerable attention for high precision particle trackers. Micro-fluidic circuits are etched in a silicon wafer, which is then bonded to a second wafer to obtain a cooling circuit. Because mono-crystalline silicon is structurally close in characteristics to brittle ...

Use of FEM in the Design of an HTS Insert Coil for a High Field NMR Magnet - new

E. Bosque[1]
[1]Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, FL, USA

High temperature superconductors (HTS) allow larger current densities through coil wound electromagnets, which produce higher magnetic fields. A high field HTS insert demonstration magnet is being built with high field homogeneity (~1 ppm) for application in nuclear magnetic resonance (NMR). The HTS NMR system is inserted into the bore of an existing high field magnet. A compensating Helmholtz ...

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET - new

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from the medical field to space exploration. They convert physical parameters such as temperature, pressure, humidity etc. into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of pressure sensors. Improvement in the sensitivity is the major factor to be considered while designing pressure ...

Optimization of a Thermoelectric Conversion System

J. R. Chase [1],
[1] Alphabet Energy, Hayward, CA, USA

Thermoelectric materials have no theoretical limit to conversion efficiency of heat into electrical power. In order to compete with other forms of power generation and small-scale energy conversion, thermoelectric converters need to maximize their practical usability when integrated with real-world sources of waste heat, and in real-life service environments. This trade-off reduces itself to ...

Time-Dependent Thermal Stress and Distortion Analysis During Additive Layer Manufacturing, by Powder Consolidation by Laser Heating

M.S. Yeoman[1], J. Sidhu[2]
[1]1. Continuum Blue Ltd., Tredomen Innovation & Technology Park, Tredomen, Ystrad Mynach, United Kingdom
[2]BAE Systems, Advanced Technology Centre, Bristol, United Kingdom

A time-dependent COMSOL Multiphysics model of an additive manufacture process, which uses powder consolidation by laser heating was developed, providing a platform to better understanding the manufacture process & provide a tool to reduce resulting distortion & optimization of an additive manufacture process. The model simulates a high intense laser energy source moving along a pre-defined time ...

Simulation of a Dual Axis MEMS Seismometer For Building Monitoring System

M. A. Shah [1], F. Iqbal [1], B. L. Lee [1],
[1] Korea University of Technology and Education, Cheonan, Chungcheong, South Korea

A dual axis MEMS seismometer targeted for building monitoring system has been simulated for a full scale of ±5g acceleration. The design uses the capacitive effect for vibration sensing. This comb drive capacitive MEMS seismometer consists of 8 springs with two proof masses. The device is very low cross axis sensitive (almost negligible cross axis error). The cross axis sensitivity of x-axis is ...

Toroidal Spring Coil: Displacements & Stress Analysis to Detect the Sealing Parameters

V. Riccardi [1],
[1] Cesare Bonetti, Garbagnate Milanese, Italy

The aim of the simulation is to study the behavior of a particular arrangement of a sealing system made of a Toroidal Spring Coil encapsulated in an thin casing, which is provided with a circumpherential cut to permit the pressure fill it inside. The mechanical simulation implemented in COMSOL Multiphysics® software is necessary to understand the displacements and stresses of the structure ...

2D Modeling of Elastic Wave Propagation in Solids Containing Closed Cracks

S. Delrue [1], V. Aleshin [2], O. Bou Matar [2], K. Van Den Abeele [1],
[1] Wave Propagation & Signal Processing Research Group, KU Leuven Kulak, Kortrijk, Belgium
[2] Institute of Electronics, Microelectronics and Nanotechnologies, Lille, France

Within the field of Non Destructive Testing (NDT) of materials, nonlinear ultrasonic techniques are becoming increasingly popular, since they provide extreme sensitivity in detecting the presence of incipient damage. However, the next step forward would be to fully characterize the detected defects (e.g. by estimating their geometric parameters), allowing to make some prediction about lifetime ...

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
Kolkata
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...

Multiphysics Modeling of Spring-Supported Thrust Bearings for Hydropower Applications

F.X. Borràs[1], J. Ukonsaari[2], A. Almqvist[1]
[1]Luleå University of Technology, Luleå, Sweden
[2]Vattenfall Research and Development, Luleå, Sweden

Spring-supported thrust bearings are used in huge rotor dynamic machines, generally to support the shafts from the biggest hydropower generators. Any attempt of modifying yhis type of thrust bearing implies huge investment and is associated with some risks. The goal of the present work is to predict the performance of spring-supported thrust bearings. With the model it is possible to carry out ...