Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

FEM Correlation and Shock Analysis of a VNC MEMS Mirror Segment - new

E. Aguayo[1], R. Lyon[2], M. Helmbrecht[3], S. Khomusi[1]
[1]The Newton Corporation, Bowie, MD, USA
[2]NASA Goddard Space Flight Center, Greenbelt, MD, USA
[3]Iris AO, Inc., Berkeley, CA, USA

Microelectromechanical systems (MEMS) are becoming more prevalent in today’s space technologies. The Visible Nulling Coronagraph (VNC) instrument, being developed at the NASA Goddard Space Flight Center, uses a MEMS Mirror to correct wavefront errors. This MEMS, the Multiple Mirror Array (MMA), will enable the VNC instrument to detect Jupiter and ultimately Earth size exoplanets. The MMA ...

Preliminary Design of the New HI-LUMI LHC Beam Screen

M. Morrone [1],
[1] CERN, Geneva, Switzerland

The high luminosity large hadron collider (HL-LHC) project aims at increasing the integrated luminosity by a factor of 10 from its original value (from 300 to 3000 fb-1) leading to the potential extension of scientific discoveries. To attain this goal, important upgrades will take place in the LHC by 2024 including the installation of new superconducting magnets in which new beam screens will be ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...

Determination of Fundamental Frequency of a Thin Rectangular Perforated Plate using COMSOL Multiphysics

S. V. N. B. Prasad, and B. Raghavendra
BITS PILANI K K BIRLA
GOA CAMPUS, India

COMSOL Multiphysics 4.0 is being used to simulate the free vibrations of a plate. The results obtained by simulation in COMSOL are in close proximity to that found by Fast Fourier Transform analyzer and analytical method. As of now the vibration analysis of thin rectangular plates with perforations in rectangular pattern has been carried out. The study of vibration analysis of thin ...

Design of a Pressure Sensor to Monitor Teeth Grinding

I.M. Abdel-Motaleb[1], K. Ravanasa[1], K.J. Soderholm[2]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA
[2]Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL USA

Studying teeth grinding behavior and other oral conditions requires the ability to accurately measure the pressure on the teeth. Placing a sensor in the mouth requires small size devices with powering and measurement techniques that do not hinder the normal life of the patient. To meet these requirements, we designed, using COMSOL, a small, easy to read MEMS capacitive force sensor, with ...

A Three Dimensional (3D) Thermo-Hydro-Mechanical Model for Microwave Drying - new

T. Gulati[1], H. Zhu[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Microwave drying of foodstuffs is a complex interplay of mass, momentum, and energy transport coupled with large deformation of the solid. To be able to better understand the microwave drying process, a fundamentals-based three dimensional (3D) multiphase porous media based model is developed to simulate the microwave drying process. An elaborate experimental system comprising of infrared ...

Effects of Solvers on Finite Element Analysis in COMSOL Multiphysics® Software - new

C. Ravi[1]
[1]Siemens Technology and Services Private Limited, Bengaluru, Karnataka, India

Introduction: Solver section of FEA plays a very important role; it takes the input from the preprocessor and solves millions of equations using numerical methods. Capability of any analysis tools can be measured based on the solver. Understanding the nature and operation of various structural solid mechanics solvers is the interest of the present study. Results: Contact pressure is ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...

Simulation of a Thermoelectric Spiral Structure

A. Arevalo [1], J. P. Rojas [1], D. Conchouso [1], M. M. Hussain [1], I. G. Foulds [2]
[1] Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
[2] The University of British Columbia, School of Engineering, Okanagan Campus, Canada

Energy efficiency and harvest, speed and performance, flexibility and portability are key elements for innovation in the current consumer electronics markets. Thermoelectric Generators can convert energy from heat gradients into electricity. Every source of heat from an electronics device can potentially be used as a source of energy. This generators have the advantage of: being silent, compact, ...