Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

Modeling Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

T. Gasch [1], A. Ansell [1],
[1] KTH Royal Institute of Technology, Stockholm, Sweden

An extension of the Solid Mechanics interface in COMSOL Multiphysics® is presented to analyze localized deformations of quasi-brittle materials, for example cracking in concrete. This is achieved by implementing an isotropic damage mechanics constitutive law, which is combined with both a local and a non-local regularization technique to ensure mesh objectivity. The implementation is made using ...

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...

Evaluation of Novel Wing Design for UAV - new

P. K. Bahumanyam[1]
[1]University of Alabama in Huntsville, Huntsville, AL, USA

Viable design alternative for the existing and fast growing UAVs which are optimized for unmanned flight is of great demand. Designing of a small scale UAV alternative to the AAI Aerosonde UAV has been considered changing the wing tail configuration of the vehicle analyzing both structural and aerodynamic performance improvements using COMSOL Multiphysics® software.

Design and Simulation of MEMS Based Piezoelectric Insulin Micro-Pump

F. Meshkinfam [1],
[1] University of Ontario Institute of Technology, Oshawa, ON, Canada

One of the most effective treatments for diabetes type 1 and 2 is the administering Insulin. The design of positive volumetric insulin pump is significantly a multiphysics problem where the volumetric change of the main pump chamber and the pumped fluid are directly coupled. We used COMSOL Multiphysics® to investigate the performance of a MEMS based Insulin Micro-Pump with a Piezoelectric ...

Design and Simulation of 3D ZnO Nanowire Based Gas Sensors for Conductivity Studies

N. Gouthami, D. Parthiban, M. Alagappan, and G. Anju
PSG College of Technology
Tamil Nadu, India

The objective of this paper is to design a 3D Gas Sensor for sensing Hydrogen gas and to increase the conductivity at nano level. In this novel design, nanorods act as the sensing layer. The sensitivity towards gas adsorption is found to be increased due to its high surface to volume ratio. The total displacement and voltage on intermediate layer after gas adsorption will be changing by varying ...

Magnetorheological Fluid Based Braking System Using L-shaped Disks - new

M. Hajiyan[1], S. Mahmud[1], H. Abdullah[1]
[1]School of Engineering, University of Guelph, Guelph, ON, Canada

This paper presents a novel design of multi-disks Magnetorheological braking system (MR brake) for automotive application. Magnetic saturation in both electromagnetic core and MR fluid is considered in this paper. The electromagnetic analysis of the proposed configuration is carried out using Finite Element based COMSOL Multiphysics® software (AC/DC Module). The system geometry, created using ...

Two-Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

B. Ghose[1], K. Balasubramaniam[2], C.V. Krishnamurthy[3], and A.S. Rao[1]
[1] High Energy Materials Research Laboratory, Pune, Maharashtra, India
[2] Center for Non Destructive Evaluation, Department of Mechanical Engineering, IIT Madras Chennai, Tamil Nadu, India
[3] Department of Physics, IIT Madras,Chennai, Tamil Nadu, India

Ultrasonic Testing (UT) is one of the important Non-Destructive Evaluation (NDE) technique widely used for characterisation of materials as well as detection and characterisation of flaws present in the material used in various industries. There are many different important materials like metals, metallic alloys, rubber, composites etc used in aerospace industries is being inspected using UT as ...

Deformation Examination of Circular Membrane by Model for PDMS from Sylgard 186 - new

N. Varga[1]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary

The deformation of one dot of tactile display for visually impaired is examined by Finite Element Method (FEM) in COMSOL Multiphysics® software. A dot with rubber-like material (Polydimethylsiloxane for Sylgard 186) can be described by a circular membrane with Ogden model, which is a well-known hyperelastic material model. For determination of the parameters of the Ogden models simple tension ...