Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerically Closing the Loop of the Adaptive Optics Sensor: the Validation of the COMSOL Multiphysics® Simulation - new

C. Del Vecchio[1], R. Briguglio[1], A. Riccardi[1]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

As any other modelling of a physical behavior, the numerical simulation of the mechanical response of an adaptive secondary mirror requires that the results match the experimental data. Such an agreement was recently demonstrated for the local mirror stiffness of the LBT and VLT Deformable Mirrors; a reliable modeling is a good tool for the extrapolation of the missing optical data (spider ...

Durability Analysis on Solar Energy Converters Containing Polymeric Materials

J. Wirth, S. Jack, M. Köhl, and K.-A. Weiß
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

The key issues of the Fraunhofer Institute for Solar Energy Systems are research and development of solar technologies for the fast growing market of solar energy. This paper presents examples of the usage of COMSOL Multiphysics: The ingress of water is a serious reason for the degradation of photovoltaic modules which can hardly be measured using experimental approaches yet. Therefore, a ...

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with COMSOL

A.T. Vermeltfoort, and J. van Schijndel
Eindhoven University of Technology, the Netherlands

The tensile strength of masonry is relatively low compared to its compressive strength and is affected by the direction of the joints and their filling. In masonry with modern thin layer mortar (joint thickness 3 to 5 mm) sometimes the head joints are left open. A total of 13 model-walls was built and for each model four general purpose mortar combinations and three thin layer mortar ...

Design and Analysis of Implantable Nanotube Based Sensor for Continuous Blood Pressure Monitoring

M. Silambarasan, T. Prem Kumar, M. Alagappan, and G. Anju
PSG College of Technology
Coimbatore
Tamil Nadu, India

The present work aims to develop a blood pressure sensor using MEMS/NEMS technology. A normal blood pressure detector is used externally, but this work mainly aims for designing an implantable nanotube based sensor for continuous monitoring of blood pressure. The use of COMSOL Multiphysics 4.1 acts as a good platform to develop a nano tube based sensor design by using the MEMS module. The ...

Deformable Image Registration for Pleural Photodynamic Therapy

B. Liu[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Deformable image registration is a form of medical image processing that can provide insights into the development of phenomenon and variation in normal anatomical structure over time. Prior to post-operative pleural photodynamic therapy (PDT), a series of CT scans of lungs will be acquired. During PDT treatment, an infrared navigation system is used to contour the lungs and provide real-time ...

Mechanical Behaviour of TiAl Spherical Particles Including Friction Effect

G. Maizza, R. Cagliero, and A. Santoro
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Powder metallurgy is a key technology for manufacturing advanced components based on TiAl alloys. Cold compaction is the primary step to produce green parts. Cold deformation of TiAl powder is difficult due to its typical poor ductility. Plastic deformation and cracking susceptibility of TiAl powder strongly depends on micro-mechanical phenomena. To manage real compaction problems more reliable ...

Modelling Failure Mechanims in Sands Under Extreme Loads Using COMSOL

J. Mwebesa, D. Kalumba, and R. Kulabako
Makerere University
Kampala, Uganda

Studies by Nishaat (2009) showed that Terzaghi\'s bearing capacity model didn\'t adequately predict the bearing capacity failure in Philippi Dune sands. Nishaat carried out her investigation using a physical model that was built in a geotechnical laboratory. The failure surfaces she observed in the sands did not resemble those predicted by Terzaghi and Meyerhof\'s models. However the use of a ...

Earth Pressure as a Boundary Condition to Bridge Piers and Abutments

M. Quinn[1], D. Whitlow[1], O.D.S. Taylor[1], M.H. McKenna[1]
[1] Engineer Resource and Development Center, United States Army Corps of Engineers, Vicksburg, MS, USA

Bridge piers and abutments makeup the bridge substructure and transmit loads from the superstructure to the bridge foundation material (Figure 1). The bridge abutment serves three purposes: to provide vertical support to the bridge superstructure where the bridge ends, to connect the bridge with the approach roadway, and to retain roadway base materials. There are several types of abutment ...

Stability of an Underground Limestone Mine

R. Haemers[1], F. Broekkamp[1], H. van Halewijn[1]
[1]Fontys University of Applied Physics, Eindhoven, The Netherlands

The hills of South-Limburg, the Netherlands, are crisscrossed with underground limestone mines. These "caves" are not equally stable, and can be dangerous. With COMSOL Multiphysics® a stability assessment has been made. The first study examines the full stress and displacement profile without excavation. In a second study the domains of the corridors are excluded, to represent the excavation ...

Toroidal Spring Coil: Displacements & Stress Analysis to Detect the Sealing Parameters

V. Riccardi [1],
[1] Cesare Bonetti, Garbagnate Milanese, Italy

The aim of the simulation is to study the behavior of a particular arrangement of a sealing system made of a Toroidal Spring Coil encapsulated in an thin casing, which is provided with a circumpherential cut to permit the pressure fill it inside. The mechanical simulation implemented in COMSOL Multiphysics® software is necessary to understand the displacements and stresses of the structure ...