Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

1D Axisymmetric Modeling of Shrinkage for Non-Porous Materials

J. M. Meot [1], A. Briffaz [1], J. Jacquin [2], S. Rashidi [2]
[1] Cirad, UMR QualiSud, Montpellier, France
[2] Bureau national Interprofessionnel du Pruneau, Villeneuve, France

A 1D-axisymmetric model was built to represent the drying of a single d’Ente plum to d’Agen prune. Underlying assumptions of the model were those of Di Matteo et al. 2003. Sorption isotherms of plum come from Tsami et al, 1990 and equation structure of apparent water diffusion coefficients from Sabarez, 2001. External transfer coefficients were adjusted by direct measurements. The parameters of ...

Simulation of the Behaviour of a Knitted Structure Made of NiTi Wires to the Mechanical Loading

J. Kafka
Technical University of Liberec
Department of Engineering Mechanics
Liberec, Czech Republic

This article describes the response of the knitted fabric to the mechanical loading and how a simplified FE model can approach realistically the response of the structure to the mechanical loading. The knitted fabric is made of nitinol material, which belongs to the group of shape memory alloys. The simulations show the behaviour of this structure in unidirectional stretching and in bending ...

A Simplified Approach to the Contact in Thermo-mechanical Analysis of Refractory Linings

Y. Kaymak
VDEh Betriebsforschungsinstitut GmbH
Düsseldorf, Germany

The geometrical design and material choice for a refractory lining requires a good understanding of its thermo-mechanical behavior. Design engineers clearly need a tool for fast and efficient computation of thermo-mechanical state of refractory linings under various conditions. However, standard simulation models and their solutions suffer as the linings are composed of many refractory blocks in ...

Designing and Simulating the Performance Analysis of Piezoresistive Fluid Flow Pressure Sensor

K. PraveenKumar[1], P. Suresh[1], K. Subash[1], M. Alagappan[1], A. Gupta[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India.

In this work, we present the performance analysis of novel micro machined Piezoresistive fluid flow pressure sensor using COMSOL Multiphysics. The principle of the sensing mechanism is based on the deflection of four sensing layers embedded on a thin membrane. The fluid passes through the layer causes the deflection of the sensing layer which measures the pressure of the fluid. The following ...

Aplicação de Elementos Finitos na Ortodontia

T. O. Bassani [1], T. Bassani [2], A. Andriguetto [1], F. Schneider [2],
[1] Instituto Latino Americano de Pesquisa e Ensino Odontológico - ILAPEO, Curitiba, PR, Brasil
[2] Universidade Tecnológica Federal do Paraná – UTFPR, Curitiba, PR, Brasil

O presente estudo visou a avaliação, por meio do método dos elementos finitos, das tensões geradas em um arco ortodôntico chamado de Arco de Retração Dupla Chave, também conhecido como DKL. Para isso foram modeladas as geometrias do arco DKL, dos bráquets e das coroas dentais, no software COMSOL Multiphysics®. O modelo criado tem como objetivo a substituição dos métodos tradicionais de ...

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with COMSOL

A.T. Vermeltfoort, and J. van Schijndel
Eindhoven University of Technology, the Netherlands

The tensile strength of masonry is relatively low compared to its compressive strength and is affected by the direction of the joints and their filling. In masonry with modern thin layer mortar (joint thickness 3 to 5 mm) sometimes the head joints are left open. A total of 13 model-walls was built and for each model four general purpose mortar combinations and three thin layer mortar ...

Analysis of Multiphysics Problems Related to Energy Piles

E. Evgin[1], J.A.I. Sedano [1], Z. Fu[1]
[1]University of Ottawa, Ottawa, ON, Canada

Energy piles transfer the mechanical loads from buildings to the ground and serve as heat exchangers. Temperature changes in the ground influence its moisture content. This paper examines the effect of soil moisture content on the shaft resistance of a pile. Tests were carried out in the laboratory to determine the mechanical properties of an interface corresponding to various soil moisture ...

Thermo Mechanical Behavior of Heat Exchangers

A. Chidley, F. Roger, and A. Traidia
ENSTA Paristech, Palaiseau, France

Nowadays, to go along with sustainable development and for cost matters, automotive heat exchangers are built with less and less aluminum and the process costs are being cut. However, the real mechanical response is a plastic shakedown, which is why we need to model the cyclic response as well as to find a fatigue criterion. A finite element model was developed using COMSOL Multiphysics to ...

Electro-Thermo-Mechanical Finite Element Modeling to Investigate the Reliability of Automotive MOSFET Transistor

T. Azoui, P. Tounsi, and J.M. Dorkel
CNRS, LAAS, Toulouse, France

3D electro-thermo-mechanical finite element model of power vertical MOSFET used in the automotive industry is presented in this paper. The presented paper is a qualitative study of power device results from electro-thermo-mechanical simulation. This study particularly interested in the stress generated at the interface between the bonding wires and the source metallization to evaluate the ...

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...