See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
An attempt was made, as described in this paper, to assign material properties like shear strength and modulus of elasticity randomly. In this way, the behaviour of a masonry wall with a prefabricated concrete lintel was experimentally tested and simulated using COMSOL. The paper ... Read More
Metal reed valves are used for flow rectification in electrohydraulic pumps driven by smart materials at high frequencies but it is difficult to predict their behavior when the surrounding fluid has considerable inertia and viscosity. Simulation of this phenomenon involves modeling the ... Read More
Microelectromechanical systems (MEMS) are becoming more prevalent in today’s space technologies. The Visible Nulling Coronagraph (VNC) instrument, being developed at the NASA Goddard Space Flight Center, uses a MEMS Mirror to correct wavefront errors. This MEMS, the Multiple Mirror ... Read More
Microcontact printing is a method for depositing patterns of thin films or molecular monolayers on surfaces using a polydimethylsiloxane (PDMS) stamp for selective mechanical contact (Figure 1). Undesired deformation of the stamp features during printing affects printed pattern quality. ... Read More
This paper reports the structural solid mechanic simulation of a MEMS out-of-plane platform that provides thermal and electrical isolation for a device built on it. When assemble, the platform lifted for approximately 400 μm above the substrate level. A mechanical stress analysis is then ... Read More
Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite ... Read More
Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. ... Read More
A research team at FSU CAPS is developing a novel fast disconnect switch based on a piezoelectric actuator for use in next-gen electric power distribution systems. COMSOL Multiphysics® software was used to optimize geometry and material selection of the disconnect switch. Current ... Read More
The ubiquitous commercial use of Lithium-Ion batteries (LIBs) has increased interest in their implementation into efficient energy storage systems for clean and renewable power sources and the electrical transportation industry. Unfortunately, LIBs are not yet technological mature to ... Read More
Turgor pressure loss and pectin degradation result in texture loss during cooking of plant based materials. To simulate texture loss, a simultaneous heat and moisture transfer, pectin degradation in the cell wall material and solid mechanical model was developed at the microscale using ... Read More
