Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment while holes pull cells toward the surface and increase residence time on the surface increasing attachment rate.

Comparison of Heat and Mass Transport at the Micro-Scale

E. Holzbecher[1], S. Oehlmann[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Phenomena of heat and mass transfer are often compared, in various porous media applications. Questions of practical interest are, for example, if tracers can be used for the prediction of heat flow, or vice versa if heat can be utilized as, possibly retarded, tracer for predicting the migration of contaminants, nutrients or other substances. Using numerical modelling in artificial porous media ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly - new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes ...

Numerical Simulation of a Rotary Desiccant Wheel

G. Diglio[1], P. Bareschino[1], G. Angrisani[1], M. Sasso[1], F. Pepe[1]
[1]Università degli Studi del Sannio, Benevento, Italy

The core unit of desiccant cooling systems is a dehumidifying device, in most cases a wheel made of inert material coated with an adsorbent (silica gel in the present work). Two sections can be identified: air to be dehumidified was passed through the process section, while in the regeneration section water vapour was removed from the adsorbent by means of dry and hot air. Solving gas-phase ...

2-D Modeling of Underground Coal Gasification (UCG)

S. Mahajani[1], S. Srikantiah[1], G. Samdani[1], A. Ganesh[1], P. Aghalayam[2]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Institute of Technology Madras, Chennai, India

UCG is a process which converts coal to syn gas at the underground coal seam itself. UCG can help meeting the rising energy demand by utilizing coal resources that otherwise would be too deep, or of poor quality, or simply not economical to mine. As UCG takes place, a cavity is formed underground in the coal seam which grows three-dimensionally. The objective of this work is to develop a two ...

Modeling of Wettability Alteration during Spontaneous Imbibition of Mutually Soluble Solvents in Mixed Wet Fractured Reservoirs - new

M. Chahardowli[1], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands

Mutually-soluble solvents can enhance oil recovery both in completely and partially water wet fractured reservoirs. When a strongly or partially water-wet matrix is surrounded by an immiscible wetting phase in the fracture, spontaneous imbibition is the most important production mechanism. Initially, the solvent moves with the imbibing brine into the core. However, upon contact with oil, as the ...

Simulation of Supercritical Fluid Extraction Process

P. Katiyar [1], S. Khanam [1],
[1] Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

This paper deals with the simulation of mathematical model for supercritical extraction. Reverchon, 1996 extracted sage oil using supercritical extraction method from sage leaves at 9 MPa and 50 ᵒC. Four mean size of sage leaves ranging from 0.25 to 3.10 mm were taken for extraction with other experimental conditions and process parameters. Experimental results were fitted in the model developed ...

Modeling Proton Transport in Hydrophobic Polymeric Electrolytes

M. Andrews[1]
[1]Caribbean Industrial Research Institute, Calibration Laboratory, University of the West Indies, St. Augustine, Trinidad and Tobago

The Polymer Electrolyte Membrane fuel cell is one of the most promising green technologies for addressing portable, as well as transportation power needs. However, the science behind the fuel cell, in many regards, is still an enigma, and even more so, with the vast numbers of novel materials created annually; designed to offset issues related to durability, conductivity, cost- effectiveness and ...

Hydrodynamics and Mass Transfer in Taylor Flow

F. L. Durán Martínez [1], A. M. Billet [1], C. Julcour-Lebigue [1], F. Larachi [2],
[1] Toulouse University, Toulouse, France
[2] Laval University, Quebec, Canada

In the present work, numerical simulations of a Monolith Reactor (MR) are carried out in order to develop a pre-design tool for industrial-scale reactors applied to highly exothermal reactions. The reacting circular channels (2-4 mm internal diameter) are coated with a few micron thick catalytic layer (washcoat), and host a gas-liquid segmented flow (the so-called Taylor flow) known to enhance ...