Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Steps for the Optimization of Pipe and Tubing Extrusion Dies

J.R. Puentes[1], T.A. Osswald[1], S. Schick[2], J. Berg[2]
[1]Polymer Engineering Center, University of Wisconsin, Madison, WI, USA
[2]TEEL Plastics, Baraboo, WI, USA

The extrusion of polyolefin pipes suffers degradation due to mechanical design problems of the extrusion die that is commonly used. This study uses numerical and computational approaches to detect problematic areas in the die geometry. Simulations show that in the conventional die there are areas of stagnation and recirculation of the melt flow, resulting in greater residence times, one of the ...

Simulation of Supercritical Fluid Extraction Process

P. Katiyar [1], S. Khanam [1],
[1] Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

This paper deals with the simulation of mathematical model for supercritical extraction. Reverchon, 1996 extracted sage oil using supercritical extraction method from sage leaves at 9 MPa and 50 ᵒC. Four mean size of sage leaves ranging from 0.25 to 3.10 mm were taken for extraction with other experimental conditions and process parameters. Experimental results were fitted in the model developed ...

Modeling Proton Transport in Hydrophobic Polymeric Electrolytes

M. Andrews[1]
[1]Caribbean Industrial Research Institute, Calibration Laboratory, University of the West Indies, St. Augustine, Trinidad and Tobago

The Polymer Electrolyte Membrane fuel cell is one of the most promising green technologies for addressing portable, as well as transportation power needs. However, the science behind the fuel cell, in many regards, is still an enigma, and even more so, with the vast numbers of novel materials created annually; designed to offset issues related to durability, conductivity, cost- effectiveness and ...

Modeling Flow and Deformation during Hot Air Puffing of Single Rice Kernels

T. Gulati[1], A. Datta[1]
[1]Cornell University, Ithaca, NY, USA

When rice is subjected to intense heating, it results in rapid evaporation of liquid water to vapor. As a consequence, large pressures are generated within the kernel in a span of 15s resulting in large volume changes causing the kernel to puff rapidly. Under suitable conditions, the ratio of initial volume to volume after puffing could be as high as 10. Rice puffing process is a complex ...

Sulfur Deactivation Effects on Catalytic Steam Reforming of Methane Produced by Biomass Gasification

P. Sadooghi[1], R. Rauch[1]
[1]Vienna University of Technology, Vienna, Austria

Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. Desulfurization has a negative effect on the process efficiency therefore steam reforming has to be run without ...

Numerical Simulation of a Rotary Desiccant Wheel

G. Diglio[1], P. Bareschino[1], G. Angrisani[1], M. Sasso[1], F. Pepe[1]
[1]Università degli Studi del Sannio, Benevento, Italy

The core unit of desiccant cooling systems is a dehumidifying device, in most cases a wheel made of inert material coated with an adsorbent (silica gel in the present work). Two sections can be identified: air to be dehumidified was passed through the process section, while in the regeneration section water vapour was removed from the adsorbent by means of dry and hot air. Solving gas-phase ...

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations - new

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...

Two-Phase Flow Models of Gas Generation and Transport in Geological Formations

O. Silva [1]
[1] Amphos 21 Consulting S.L. - iMaGe Consortium, Barcelona, Spain

Gas generation and transport through porous media is a process common to many field applications such as radioactive waste and underground gas storage. In these operations, the gas phase evolution depends on the thermodynamic conditions at depth, the properties of the fluids (density, viscosity, surface tension) and the geological formation (permeability, porosity, retention curve), as well as ...

Investigation of Reverse ElectroDialysis Units by Multi-Physical Modelling

L. Gurreri [1], F. Santoro [1], G. Battaglia [1], A. Cipollina [1], A. Tamburini [1], G. Micale [1], M. Ciofalo [1],
[1] Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università degli Studi di Palermo (UNIPA), Palermo, Italy

Salinity gradient represents an interesting renewable energy source. Reverse ElectroDialysis (RED) is an ion exchange membrane-based process that convert directly the salinity gradient energy into electric current. Thereby, two solutions at different concentrations are fed into two series of alternated channels. As various physical phenomena occur in RED units and affect the process performance, ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...