Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

H. White[1], L. Luo[1]
[1]Department of Chemistry, University of Utah, Salt Lake City, UT, USA

A characteristic feature of nanochannels is that surface properties (e.g., electrical charge) play a more significant role in the transport of fluid and electrolyte. Two oppositely directed flows (electroosmotic flow and pressure-driven flow) determine the flow profile at the nanopore orifice as well as electrolyte distribution. Once there are two electrolyte solutions with different ...

Modeling and Simulation of Drug Release through Polymer Matrices - new

V. Runkana[1], A. Pareek[1], P. Arora[2]
[1]Tata Consultancy Services, Pune, Maharashtra, India
[2]Indian Institute of Technology Delhi, New Delhi, Delhi, India

Limited drug efficacy, undesirable temporal changes in drug concentration and patient non-compliance due to frequent dosing schedule have given impetus to design of controlled drug release systems [1]. Biodegradable polymers due to their favorable and tunable properties and biocompatibility have found widespread use in the field of controlled drug delivery [2]. Exploratory in vitro experiments ...

Using COMSOL Multiphysics® Software for Benchmarking Problems in Cell Migration

M. Nickaeen [1], I. L. Novak [1], A. Mogilner [2], B. M. Slepchenko [1],
[1] Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
[2] Courant Institute and Department of Biology, New York University, New York, NY, USA

A recently published conservative algorithm for simulating reactions and transport in moving domains have been extended to models in which cell kinematics are coupled with intracellular dynamics. For this, the method that combines a Eulerian approach with tracking an explicit boundary was linked to FronTier, a robust front-tracking technique. The extended algorithm was validated using a set of ...

A Model of Heat Transfer in Metal Foaming

Bruno Chinè [1], Valerio Mussi [2], Michele Monno [3], Andrea Rossi [2],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[3] Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy

Metal foams are interesting materials with many potential applications. Foamed metals or alloys include gas voids in the material structure and therefore the density is introduced as a new variable, with the real possibility to modify ad hoc their physical properties. In the indirect foaming process carried out in a furnace, simultaneous mass, momentum and energy transfer between three phases, ...

Steps for the Optimization of Pipe and Tubing Extrusion Dies

J.R. Puentes[1], T.A. Osswald[1], S. Schick[2], J. Berg[2]
[1]Polymer Engineering Center, University of Wisconsin, Madison, WI, USA
[2]TEEL Plastics, Baraboo, WI, USA

The extrusion of polyolefin pipes suffers degradation due to mechanical design problems of the extrusion die that is commonly used. This study uses numerical and computational approaches to detect problematic areas in the die geometry. Simulations show that in the conventional die there are areas of stagnation and recirculation of the melt flow, resulting in greater residence times, one of the ...

Transport Phenomena in the Conversion of an Anaerobic Landfill into an Aerobic Landfill

H. Omar [1], S. Rohani [1],
[1] University of Western Ontario, London, ON, Canada

The world’s landfills are beginning to fill up due to the growing human population. Landfills require land and there will come a time when there will be no land to be used for landfills. A solution that is gaining attraction is the conversion of traditional “dry-tomb” landfills (used for storage) into bioreactor landfills. Dry-tomb landfills have many associated problems such as methane ...

Model and App of Hydrophobic Meshes Used in Oil Spill Recovery

O. Silva [1], E. Coene [1], J. Molinero [1], B. Shafei [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Hydrophobic meshes are a new, promising technique for the recovery of spilled oil in the ocean. They allow to recover and store oil, while filtering it from the surrounding water. They are clean, efficient and can be used in continuously. These meshes have one drawback, however: if they are submerged too deep under the water level, the high pressure will cause presence of water in the recovered ...

Modeling of Radial Source Flow in Porous Media: Miscible Viscous Fingering Patterns

V. Sharma [1], S. Pramanik [2], M. Mishra [1],
[1] Indian Institute of Technology Ropar, Rupnagar, India
[2] Indian Institute of Technology Ropar, Rupnagar, India; Nordita, SE-10691 Stockholm, Sweden.

COMSOL Multiphysics® software was used to model radial source flow in two dimensional homogeneous porous media. Two-Phase Darcy's Law (tpdl) is used to model miscible viscous fingering. Fingering patterns obtained on using different mesh are discussed. Evolution from 'flowers' to 'branches' is observed in the fingering patterns. Stable displacement is generated even in the presence of unstable ...

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Rheological Behaviour of Single–Phase Non-Newtonian Polymer Solution in Complex Pore Geometry: A Simulation Approach

P. Idahosa[1], G. Oluyemi[2], R. Prabhu[2], B. Oyeneyin[2]
[1]IDEAS Research Institute/School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.
[2]School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.

One of the most important criteria for evaluating chemical enhanced oil recovery (EOR) processes that use polymers is its rheological behaviour which in turn account for other physical effects of adsorption and resistance factors during polymer-rock interactions. However, complete knowledge of behaviour of polymer solution in porous media has not yet been fully gained. A computational fluid ...