Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Chemical Reactions at Interfaces During Droplet Formation in Microchannels

Simeon Cavadias [1], Cédric Guyon [2], Gerrardo Vera De la Cruz [3],
[1] Institut Pierre-Gilles de Gennes (IPGG) - UPMC, France
[2] Chimie-ParisTech - Institut Pierre-Gilles de Gennes (IPGG) , France
[3] Master Nuclear Energy, ISTN (Saclay), France

Emulsions, small liquid droplets of oil in water or water in oil, find wide application in, pharmaceutical products, fine chemicals, analytical chemistry. Microfluidic devices allow creation of uniform droplets with a tight distribution. The COMSOL Multiphysics® software model presented here is an extension of the tutorial “Droplet Breakup in a T- junction”. In this tutorial uniform droplets ...

Approaches for Fuel Cell Stack Modeling and Simulation with COMSOL Multiphysics

C. Siegel[1,2], G. Bandlamudi[1,2], P. Beckhaus[1], and A. Heinzel[1,2]
[1]Zentrum für BrennstoffzellenTechnik (ZBT), Duisburg, Germany
[2]University of Duisburg-Essen, Duisburg, Germany

This study highlights the possibility of using COMSOL Multiphysics for solving large scale PEM fuel cell stack models in the order of several million degrees of freedom (DOF). First, different gas flow channel configurations are solved in order to highlight the fluid flow and pressure behaviour. For these models, the full 3D Navier-Stokes equations are solved. It is seen that the amount of fluid ...

Experimental Validation of Model of Electro-Chemical-Mechanical Planarization (ECMP) of Copper

J. Ebert[1], S. Ghosal[1], A. Emami-Naeini[1]
[1]SC Solutions, Sunnyvale, CA, USA

This paper describes the development of a COMSOL model of Electro-Chemical-Mechanical Planarization (ECMP) that was validated with experimental data. ECMP is used for processing of semiconductor wafers. We developed a 2D model of flow of phosphoric acid solution (the electrolyte) between two parallel plates that focuses on the physics and electrochemistry in ECMP. The model includes steady-state ...

Model Development and Implementation of a Membrane Shift Reactor

J. Völler[1], M. Follmann[1], C. Bayer[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Low temperature fuel cells require hydrogen of high purity for electricity production to avoid catalyst poisoning. To purify hydrogenrich flue gases from hydrocarbon steam reforming membrane shift reactors with a metal membranes may be utilized. A model of a tubular membrane shift reactor with a hydrogenseparating palladium membrane is modeled in the COMSOL Multiphysics® Chemical Engineering ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...

Acid-Base Reactions Enhancing Membrane Separation: Model Development and Implementation

C. Bayer[1], S. Stiefel[1], M. Follmann[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Reactive extraction of organic acids from an aqueous solution to an alkaline stripping fluid is based on a selective barrier allowing permeation of non-polar molecules, which subsequently react with the stripping agent. The shift from the organic acid to its base induced by the chemical equilibrium enhances mass transfer inside the membrane’s porous substructure. A model of the porous ...

Study of Thermo-Electrical and Mechanical Coupling During Densification of a Polycrystalline Material Using COMSOL

F. Mechighel[1,2,3], B. Pateyron[1], M. El Ganaoui[1], and M. Kadja[3]
[1]CNRS SPCTS UMR 6638, Universite de Limoges, France
[2]Département de Génie Mécanique, Universite de Annaba, Algerie
[3]Département de Génie Mécanique, Universite de Constantine, Algerie

Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulation of sintering kinetics and therefore makes it possible to obtain polycrystalline materials (ceramic or metallic) with tailored microstructures. A numerical simulation of the electrical, thermal and mechanical coupling during SPS is performed. Equations for conservation for ...

Miscible Viscous Fingering: Application in Chromatographic Columns and Aquifers

S. Pramanik[1], G. L. Kulukuru[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

When a less viscous fluid displaces a more viscous one in a porous medium or Hele-Shaw cell, the interface between the two miscible fluids does not remain flat and deforms into fingers growing in time [1]. It occurs due to the faster movement of less viscous fluid than the more viscous one, for a given pressure gradient. Fingering affects in aquifers, in packed bed reactors, and detrimental to ...

Simulating Corrosion in a Crevice of Commercial Pure Titanium

G. Zhang [1, 2, 3],
[1] Department of Bioengineering, Clemson University, Clemson, SC, USA
[2] Department of Electrical and Computer Engineering, Clemson, SC, USA
[3] Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Implant devices are assistive devices surgically placed in the human body to restore the functionality of organs and tissues. Metallic implants are often used for load bearing applications including the hip and knee joints. To allow maximum flexibility during surgery for surgeons to pick and choose different combinations of parts (say, head, neck and stem, in the case of total hip replacement), ...

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...