Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computer-aided Design of the Heating Section of a Continuous Kheer (Rice Pudding)-making Machine

S. Kadam[1], T. Gulati[2], A. Datta[1]
[1]Indian Institute of Technology, Kharagpur, India
[2]Cornell University, Ithaca, NY, USA

Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which among other components consists of a heating section for cooking kheer. The present study investigates the CFD ...

Flow Distributor Optimization in a Tubular Reactor

J. O. R. Lizarazo [1], L. A. S. Mejía [1], M. I. J. Gutierrez [1], J. A. P. Avella [1],
[1] Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia

In the poster you can see a project where using computational tools like the COMSOL Multiphysics® software, hydrodynamics of a photo electrocatalytic reactor was studied. It was evident that the influential factor is the geometry of inlet and exit header. Therefore, these changes were made to reduce the effects of input/output and thus improve the hydrodynamics of the fluid in the reactor. As a ...

Non-Isothermal Kinetics of Water Adsorption in Compact Adsorbent Layers on a Metal Support

G. Füldner, and L. Schnabel
Fraunhofer Institute of Solar Energy Systems, Freiburg, Germany

Water adsorption in highly porous materials can be used in heat transformation processes for the efficient use of energy in heat and cold production. One technology for such a thermal heat transformation is the use of water adsorption in highly porous adsorbents like zeolite. To optimize the power density of compact thin layer adsorbent beds, a one-dimensional model of the coupled heat and mass ...

3D Dynamic Simulation of a Metal Hydride-Based Hydrogen  Storage Tank

A. Freni, and F. Cipiti
CNR- Institute for Advanced Energy Technologies “Nicola Giordano”, Messina, Italy

In this paper, a 3D dynamic simulation for a portion of a metal hydride-based (LaNi5) hydrogen storage tank is presented. The model is based on heat and mass balances and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature sorbent bed. The governing equations were implemented and solved using the COMSOL Multiphysics software package. The simulation ...

Modeling the Performance of Energy Recovery Ventilators

N. Lemcoff[1], R. Pastor[2], and E. Miravete[1]
[1]Rensselaer Polytechnic Institute, Hartford, CT
[2]General Dynamics Electric Boat, Groton, CT

The objective of this study is to numerically evaluate the effectiveness of an energy recovery ventilator (ERV) during the summer and winter seasons. The energy recovery ventilator allows heat and mass transfer between two air streams separated by a membrane. The effects of varying the following parameters were examined: flows through the supply and exhaust ducts, height of the exhaust channel, ...

Cycling-Induced Degradation of Batteries

M. Vallance [1], A. Meshkov [1], R. White [2], M. Guo [2], S. Rayman [2], L. Cai [2]
[1] GE Global Research, Niskayuna, NY, USA
[2] R.E. White & Associates, Columbia, SC, USA

Rechargeable batteries solve electrification and communication problems. As examples, hybrid battery-diesel generator power supplies efficiently power cell towers in remote locations, detached from the power grid. Large battery banks are used to load level user power requirements, reducing stress on power generation infrastructure. Batteries firm the output capacity of intermittent wind ...

Multiphysics Model for Breakup of Charged Liquid Droplets in Electric Fields

S. Chaudhuri [1], W. Du [1],
[1] University of Illinois at Urbana-Champaign, Champaign, IL, USA

Predicting and controlling the formation of droplets from a liquid jet is a critical problem in a variety of applications ranging from fuel injection to paint sprays. It is known that liquid droplets subjected to an electric field acquire a net electrostatic charge via induction, and that the magnitude of this charge depends on the conductivity of the liquid and the size of the droplet [1]. When ...

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...

Simulation of a Dynamic Scraped Surface Heat Exchanger for Non-Newtonian Fluids

S. Birla [1],
[1] ConAgra Foods, Omaha, NE, USA

Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. One of the factor posing difficulties to heat transfer is viscosity. Highly viscous fluids tend to generate deep laminar flow, a condition with very poor heat transfer rates and high pressure losses involving a ...

Reliability Evaluation for Static Chamber Method at Landfill Sites

H. Ishimori[1], K. Endo[1], and M. Yamada[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

In this study, COMSOL Multiphysics was used for the reliability evaluation for static chamber method at landfill sites. Static chamber method, which measures landfill gas emission fluxes, is widely used at landfill sites for the monitoring of greenhouse gas emission such as methane and carbon dioxide. The accuracy and the reliability of static chamber method are dependent on the measuring ...