Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Entropic Evaluation of Dean Flow Micromixers

P. S. Fodor[1], M. Kaufman[1]
[1]Cleveland State University, Cleveland, OH, USA

In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the fluid as it travels along the curved trajectory induce counter-rotating flows. The presence of these transversal ...

Diffusion and Reaction in Fe-Based Catalyst for Fischer-Tropsch Synthesis Using Micro Kinetic Rate Expressions - new

A. Nanduri[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for FTS processes. The scale-up of MTFBR is complicated by the ...

Modeling of Residual Stresses in a Butt-welded Joint with Experimental Validation

V. Srivastava [1],
[1] Naval Materials Research Laboratory (NMRL), Defence Research and Development Organization (DRDO), Ambernath, Thane, Maharashtra, India

2D-modeling of arc welding in butt-joint configuration was performed in this study considering thermal-structural interactions. Thermal behavior was modeled in COMSOL Multiphysics® using the Heat Transfer Module with weld heat input as a Gaussian pulse whereas structural behavior using Structural Mechanics Module. Thermal-elastic-plastic behavior model based on Von Mises yield criteria and ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...

COMSOL® and MATLAB® Integration to Optimize Heat Exchangers Using Genetic Algorithms Technique

J. Muñoz[1], R. Valencia[2], and C. Nieto [3]
[1] Semillero Termodinámica y Fluidos, Universidad Pontificia Bolivariana, Medellin, Antioquia, Colombia
[2] Grupo Automática y Diseño
[3] Instituto de Energía y Termodinámica, Mechanical Engineering Faculty, Universidad Pontificia Bolivariana, Medellin, Antioquia, Colombia

Genetic Algorithms (GA) have proved to be a complete and effective approach for solving optimization problems. This article presents the integration between COMSOL® and a GA optimization tool coded in MATLAB® for the optimization of two thermal systems: a constant area fin in 2D and a concentric heat exchanger in 2D. Analysis permitted us to achieve efficiencies of up to 90%. For the ...

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

H. White[1], L. Luo[1]
[1]Department of Chemistry, University of Utah, Salt Lake City, UT, USA

A characteristic feature of nanochannels is that surface properties (e.g., electrical charge) play a more significant role in the transport of fluid and electrolyte. Two oppositely directed flows (electroosmotic flow and pressure-driven flow) determine the flow profile at the nanopore orifice as well as electrolyte distribution. Once there are two electrolyte solutions with different ...

Numerical Simulation of Concentration Polarization to Estimate Gypsum and Calcium Carbonate Scaling on Membrane Surfaces

A. Santafé-Moros[1], J.M. Gozálvez-Zafrilla[1]
[1]Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM) - Universitat Politècnica de Valencia, Valencia, Spain

This paper shows a model to estimate the scaling parameters for reverse osmosis membrane processes. The model takes into account the concentration polarization of ionic species in the membrane channel of spiral-wound modules and the effect of the spacers on the flow. The scaling potential of calcium carbonate and sulfate carbonate (gypsum) salts were studied, as they are common sparingly salts ...

Modeling and Simulation of Drug Release Through Polymer Hydrogels

V. Runkana[1], S. Maheshwari[1], S. Cherlo[1], RSR Thavva[1]
[1]Tata Research Development and Design Centre, Tata Consultancy Services Ltd., Pune, Maharashtra, India

Polymer hydrogels are commonly used as carriers or vehicles for the controlled release of drugs, primarily because of their bio-compatibility and because rates of drug release can be controlled by manipulating polymer properties like molecular weight, cross linking ratio, etc. Drugs can be released for prolonged periods of time through polymer hydrogels [1, 2]. Sustained drug release may ...

Numerical Study of Flux Models for CO2 - Enhanced Natural Gas Recovery and Potential CO2 Storage in Shale Gas Reservoirs - new

N. Prajapati[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

This work encompasses different physics involved in fluid flow in shale gas reservoir. Non-linear equations for fluid flow are solved with COMSOL Multiphysics® PDE module. It focuses on comparing the performance of various species transport flux models by accounting for inter-molecular interactions and gas-rock interactions.

Application of COMSOL Multiphysics® Software in Transport Phenomena Educational Processes

P. L. Mills [1], M. Vasilev [1], P. Sharma [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Use of simulation software for solving realistic engineering problems has grown significantly in recent years due to the availability of less expensive but more powerful computers and development of user-friendly yet robust codes. From an educational perspective, students in STEM disciplines can now solve complex problems in a relatively short period of time, which provides new ...