The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Electric Impedance Sensor

Electric impedance measurements are used for imaging and detection. Applications range from nondestructive testing and geophysical imaging to medical imaging. Several alternative techniques are shown to model such a system. One of them shows how to use conditional expressions to define spatially dependent material properties. Another shows how to use multiple terminals for distributed sensing ...

Touchscreen Simulator

Intended as a tool for early proof of concept in capacitive touchscreen device development, the Touchscreen Simulator app evaluates a simulated capacitance matrix as well as the electric field norm. The app computes the capacitance matrix of a touchscreen in the presence of a human finger phantom, where the position and orientation of the finger are controlled via input parameters. This ...

Inductance of a Power Inductor

Power inductors are a central part of many low-frequency power applications. They are, for example, used in the switched power supply for the motherboard and all other components in a computer. Computer simulations are necessary in the design of such inductors. This model calculates the inductance from specified material parameters.

Permanent Magnet Motor in 3D

Permanent magnet (PM) motors are used in many high-end applications, such as in electric and hybrid vehicles. An important design limitation is that the magnets are sensitive to high temperatures, which can occur through heat losses caused by currents, particularly eddy currents. In this tutorial, an 18-pole PM motor is modeled in 3D to accurately capture eddy current losses in the magnets. ...

Quadrupole Mass Spectrometer

The principle component of a quadrupole mass spectrometer is the mass filter which is used to filter ions with different charge to mass ratios. The quadrupole mass filter has been well studied over the years, Ref. 1 and the physics and optimal design are well understood. In a real quadrupole mass spectrometer, fringe fields exist at both the entrance and exit of the mass filter. These fringe ...

Comparison of Effective HB/BH Curve with Linear and Nonlinear Material Models

This example illustrates how to setup the Effective HB/BH Curve material model, introduced in COMSOL 5.2, for modeling the magnetic materials in frequency domain. The model also compares the results from Effective HB/BH Curve model with the linear and nonlinear HB/BH Curve material model in 2D.

Frequency Domain Study of Three-Phase Motor

This is a three phase induction motor model from the [Transient Electromagnetic Analysis Method (TEAM) workshop problem 30](http://www.compumag.org/jsite/images/stories/TEAM/problem30a.pdf). The electromagnetic torque, induced voltage, and rotor losses computed from COMSOL model at various rotor speed are compared to the results from TEAM workshop problem 30. The *Magnetic Fields* physics is ...

Electrodynamic Wheel Magnetic Levitation in 2D

This model illustrates the working principle of an electrodynamic wheel (EDW) magnetic levitation system. EDW magnetic levitation system consists of rotating and/or translationally moving permanent magnet Halbach rotor above a passive conducting guideway/track. Eddy current is induced in the guideway due to the rotation and/or translational motion of the Halbach rotor. The induced eddy ...

Electromagnetic Force Calculation Using Virtual Work and Maxwell Stress Tensor

The model compare the electromagnetic force calculated by *virtual work* and *maxwell stress tensor* methods on the axial magntic bearing. The forces is evaluated by studying the effect of a small displacement on the electromagnetic energy of the system. This is done by using the *Magnetic Fields*, *Deformed Geometry* and *Sensitivity* physics interfaces.

Magnetic Signature of a Submarine

A vessel traveling on the surface or under water gives rise to detectable local disturbances in the Earth’s magnetic field. These disturbances can be used to trigger weapon systems. The magnetic signature of a ship can be reduced by generating a counteracting magnetic field of suitable strength and direction based on prior knowledge of the magnetic properties of the vessel. This model ...