The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Diffuse Double Layer

At the electrode-electrolyte interface, there is a thin layer of space charge in a diffuse double layer. This may be of interest when modeling devices such as electrochemical capacitors and nanoelectrodes. This tutorial example shows how to couple the Nernst-Planck equations to the Poisson equation, in order to describe diffuse double layer according to a Gouy-Chapman-Stern model. The physics ...

A Multiscale 3D Packed Bed Reactor

One of the most common reactors in the chemical industry, for use in heterogeneous catalytic processes, is the packed bed reactor. This type of reactor is used both in synthesis as well as in effluent treatment and catalytic combustion. This model is set up to calculate the concentration distribution in the reactor gas that flows around the pellets, but it also uses an **extra dimension** that ...

Protein Adsorption

Ion-exchange is a powerful method to separate proteins from solutions and is today readily used in biotechnological and pharmaceutical industry. This model simulates an ion-exchange column for protein adsorption. The fluid phase contains four components: two proteins, solvent, and one salt. The adsorption/desorption kinetics is described by two equilibrium reactions where proteins displace ...

Porous Reactor with Injection Needle

Modeling packed beds, monolithic reactors, and other catalytic heterogeneous reactors is substantially simplified with the *Reacting Flow in Porous Media* multiphysics interface. This defines the diffusion, convection, migration, and reaction of chemical species for porous media flow without having to set up separate interfaces and couple them. The multiphysics interface automatically combines ...

Analysis of NOx Reaction Kinetics

This suite of examples illustrate the modeling of selective NO reduction, that occurs as flue gases pass through the channels of a monolithic reactor in the exhaust system of a motored vehicle. The simulations are aimed at finding the optimal dosing of NH3, the reactant that serves as reducing agent in the process. Three different analyses are performed: Kinetic analysis: The example takes a ...

Syngas Combustion in a Round-Jet Burner

The model simulates non-premixed turbulent combustion of syngas (synthesis gas) in a simple round-jet burner. Syngas is a gas mixture, primarily composed of hydrogen, carbon monoxide and carbon dioxide. The name syngas relates to its use in creating synthetic natural gas. In the model, syngas is fed from a pipe into an open region with a slow co-flow of air. Upon exiting the pipe, the syngas ...

Membrane Dialysis

Dialysis is a widely used chemical species separation method. One such example is hemodialysis, which acts as artificial kidneys for people with renal failure. In dialysis, only specific components are allowed to diffuse through the membrane, based on differences in molecular size and solubility. The Membrane Dialysis app simulates a process for lowering contaminant concentration in a fluid. ...

Packed Bed Reactor

One of the most common reactors in the chemical industry, for use in heterogeneous catalytic processes, is the packed bed reactor. This type of reactor is used both in synthesis as well as in effluent treatment and catalytic combustion. The reactor consists in essence of a container filled with catalyst particles. These particles can be contained within a supporting structure, like tubes or ...

Electroosmotic Flow in Porous Media

This example treats the modeling of electroosmotic flow in porous media. The system consists of a compartment of sintered porous material and two electrodes that generate an electric field. The cell combines pressure and electroosmotic driven flow. The equations that are solved are the continuity equations for flow velocity and current density together with a mass balance using the ...

Chemical Vapor Deposition of GaAs

Chemical vapor deposition (CVD) allows a thin film to be grown on a substrate through molecules and molecular fragments adsorbing and reacting on a surface. This example illustrates the modeling of such a CVD reactor where triethyl-gallium first decomposes, and the reaction products along with arsine (AsH3) adsorb and react on a substrate to form GaAs layers. The CVD system is modeled using ...

First
Previous
1–10 of 47