The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

Plasma Modulex

Boltzmann DC Glow Discharge

This application models a DC glow discharge. The electron energy distribution function (EEDF) and electron transport properties are computed with the *Boltzmann Equation, Two-Term Approximation* interface. Since input parameters for the *Boltzmann Equation, Two-Term Approximation* ... Read More

Capacitively Coupled Plasma

The NIST Gaseous Electronics Conference has provided a platform for studying Capacitively Coupled Plasma (CCP) reactors, which is what this application is based upon. The operating principle of a capacitively coupled plasma is different when compared to the inductive case. In a CCP ... Read More

Drift Diffusion Tutorial

The Drift Diffusion interface solves a pair of reaction/advection/diffusion equations, one for the electron density and the other for the mean electron energy. This tutorial example computes the electron number density and mean electron energy in a drift tube. Electrons are released ... Read More

Neagative Streamer in Nitrogen

Streamers are transient filamentary electric discharges that can develop in a nonconducting background in the presence of an intense electric field. These discharges can attain high electron number density and consequently a high concentration of chemical active species that are relevant ... Read More

Microwave Microplasma

Plasmas sustained in microscale discharge gaps are able to operate at high pressure (1 atm) with high electron number density (1020 m-3) and power density (109 W.m-3) while maintaining a relatively cool heavy-particle temperature. This model simulates an atmospheric pressure argon plasma ... Read More

GEC CCP Reactor

This model investigates the National Institute of Standards and Technology (NIST) Gaseous Electronics Conference (GEC) reference cell in two dimensions using the _Plasma, Time Periodic_ interface. A 2D example helps in understanding the physics without excessive CPU time. The cell is ... Read More

Ion Energy Distribution Function

One of the most useful quantites of interest after solving a self-consistent plasma model is the ion energy distribution function (IEDF). The magnitude and shape of the IEDF depends on many of the discharge parameters; pressure, plasma potential, sheath width etc. At very low pressures ... Read More

Applying a Current-Voltage Switch to Models

This example exemplifies how to model the switching between current and voltage excitations in *Terminal* boundary conditions. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Control Current and Voltage Sources with the AC/DC Module]( ... Read More

Global Model Coupled with the Two-Term Boltzmann Equation

The electron energy distribution function (EEDF) plays an important role in the overall behavior of discharges. In this example, the formation period of an Argon plasma is studied with special attention paid to the EEDF. The plasma is created within a 4 cm gap by a DC source voltage of 1 ... Read More

Argon Boltzmann Analysis

The electron energy distribution function (EEDF) plays an important role in the overall behavior of discharges. Analytic forms of the EEDF exist such as Maxwellian or Druyvesteyn, but in some cases they fail to fit the discharge physics. This tutorial model investigates the effects ... Read More