Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Uncertainty Analysis, Verification and Validation of a Stress Concentration in a Cantilever Beam

S. Kargar, and D. Bardot
University of Alabama, Huntsville, AL, USA

In this paper we compare the results from a bending cantilever beam experiment with the theoretical values and COMSOL finite element simulation results. In the experiment a simple cantilever beam with a hole is loaded at the end. Measurements are recorded by four strain gauges mounted on the beam, three near the hole and one at a location where the nominal stress is equivalent to that of a ...

The Transient Modeling of Bubble Pinch-Off Using an ALE Moving Mesh

C.J. Forster, and M.K. Smith
Georgia Institute of Technology, Atlanta, GA, USA

The use of an acoustic field to control the boiling process has the potential to increase the overall rate of heat transfer and delay the critical transition to film boiling. This system is being investigated through the development of a model of a single boiling bubble near a flat, heated, horizontal surface in the presence of an acoustic field. The dynamics of the bubble interface is ...

Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields

S. Khushrushahi, and M. Zahn
Massachusetts Institute of Technology, Cambridge, MA, USA

A fully filled sphere of ferrofluid has constant demagnetizing factors in all three Cartesian directions such that when subjected to a uniform external rotating magnetic field the internal field is also uniform, and ultrasound measurements give no observable flow. Non-uniform magnetic fields or a non-uniform distribution of susceptibility are necessary conditions for ferrofluid spin-up flows in ...

Analysis of Lubricant Flow Through Reynolds Equation

K.C. Koppenhoefer[1], S.Y. Yushanov[1], L.T. Gritter[1], J.S. Crompton[1], and R.O. Edwards[2]
[1]AltaSim Technologies LLC, Columbus, OH, USA
[2]Cummins Fuel Systems, Columbus, IN, USA

Reynolds equation is used to analyze fluid flow through small gaps. As such, the solution of Reynolds equation provides critical information for a wide range of tribological problems. In any case where a lubricant resides between two moving surfaces, the Reynolds equation can be used to solve for the flow. In the case considered in this paper, lubricant flows between a piston and housing forced ...

Modeling Energy Harvesting From Membrane Vibrations in COMSOL

R.K. Kapania, R.C. Singh, and C. Sultan
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

This paper presents an ongoing effort, motivated by developing self-contained sensors for structural health monitoring of inflatable structures, to model the process of extracting useable electrical power from the mechanical vibrations of thin, prestressed membrane structures. Energy harvesting from mechanical vibrations of these structures may provide enough power to operate both the sensors as ...

Modeling Light Diffraction Using the Finite Element COMSOL

J.D. Bamonte
U.S. Naval Academy, Annapolis, MD, USA

COMSOL is finite element modeling software capable of solving partial differential equations. This capability allows for the modeling of boundary value problems, which is necessary to the study of light and the properties of light propagation. For this study, we are modeling Fraunhofer diffraction of light using a solution of the Helmholtz equation with boundary values appropriate for ...

Modeling PIN Photodiodes

R.W. Pryor
Pryor Knowledge Systems Inc., Bloomfield Hills, MI, USA

This paper presents one approach to the modeling of an abrupt junction PIN photodiode light sensor using COMSOL Multiphysics software and the incorporated SPICE® capability. The current model is built using the capabilities of SPICE in COMSOL Multiphysics 4.0. This model demonstrates the use of SPICE and the AC/DC Module to build a conduction current, rather than an electrostatic, model. This ...

Numerical Simulation of a Joule Heating Problem

S.M.F. Garcia[1], and P. Seshaiyer[2]
[1]U.S. Naval Academy, Annapolis, MD, USA
[2]George Mason University, Fairfax, VA, USA

In this work we consider a 1-D mathematical model that describes a heating problem combined with electrical current flows in a body which may undergo a phase change as a result of the heat generated by the current, so-called Joule heating. The model consists of a system of nonlinear partial differential equations with quadratic growth in the gradient. Joule heating is generated by the resistance ...

Simulation of a Magnetophoretic Device for the Separation of Colloidal Particles in Magnetic Fluids

S.K. Fateen, and M. Magdi
Cairo University, Giza, Egypt

Magnetophoresis of non-magnetic particles is the induced motion of non-magnetic particles suspended in magnetic media on the application of a magnetic field gradient. Magnetophoresis can be used in special separation devices to separate colloidal particles based on their sizes. Multiphysics computational programs, such as COMSOL, are ideal for the modeling and simulation of those devices. In ...

Virtual Acoustic Prototyping – Practical Applications for Loudspeaker Development

A. Salvatti
JBL Professional, Northridge, CA, USA

The author presents an overview of methods to build virtual prototypes of both horns and loudspeaker drivers which allows a significant reduction in the number of physical prototypes, as well as reduced development time. This paper will present some of the practical results from work the author has performed in the course of designing both transducers and horns using COMSOL Evolution of the ...