Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Wall Effect on A Spherical Particle Settling along The Axis of Cylindrical Tubes Filled with Carreau Model Fluids

D. Song[1], R. Gupta[1], and R. Chhabra[2]
[1]Dept. of Chemical Engineering, West Virginia University, Morgantown, WV
[2]Indian Institute of Technology, Kanpur, India

The effect of finite boundaries on the drag experienced by a rigid sphere settling along the axis of cylindrical tubes filled with Carreau model fluids has been examined systematically over a wide range of condition. As expected, the presence of finite boundaries leads to an increase in the drag force exerted on a falling sphere thereby retarding its descent due to the obstruction caused by ...

Simulation of an Atmospheric Pressure Direct Current Microplasma Discharge in He/N2

L. Tong
Keisoku Engineering System Co. Ltd.
Tokyo
Japan

A study of an atmospheric pressure direct current microplasma discharge in He/N2 is performed using COMSOL Multiphysics. The calculation of heat transfer is fully coupled with the plasma simulation so as to resolve the gas heating in discharges. A simple circuit model is used to decide the discharge voltage so that the current-voltage (I-V) characteristics are obtained. The I-V ...

A Flow Induced Vertical Thermoelectric Generator and its Simulation using COMSOL Multiphysics

E. Topal
Micro and Nanotechnology Program
Middle East Technical University
Ankara, Turkey

In this study, a new thermoelectric harvester with fluid flow for increased performance is introduced. The thermoelectric generator is 3D vertical configuration with p- and n-doped Silicon thermolegs. There is water flow between channels integrated through the thermoelectric columns, providing forced convection on the heat flow path. Our thermoelectric generator design can be used for energy ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid ...

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Thermal Stress in a Zero Thermal Expansion Composite

C. Romao, and M. White
Dept. of Chemistry and Institute for Research in Materials
Dalhousie University
Halifax, NS
Canada

A series of 2-D finite element models of a ZrO2-ZrW2O8 composite system were created in COMSOL Multiphysics to study the effect of pores between the matrix (ZrO2) and filler (ZrW2O8) materials. Pores were modeled as ellipses concentric with the filler particles. Seventeen model geometries of varying microstructure were studied in order to determine correlations between microstructural ...

Using the Superposition Principle and Edge Current Model to Compute Impedance of the Coil in a Logging Tool

T. Zhao, G. Minerbo, J. Hunka, and G. Hazen
Schlumberger
Sugar Land, TX

Coil antenna is the simplest form in well-logging tools for resistivity measurement of the formation. This paper introduces how to accurately compute the impedance of the coil with very thin wires at high frequency, and with the complex borehole structure, e.g., metal housing and collar. A 3D RF electromagnetic wave in frequency domain is used. An alternate array of transmitters and receivers ...

Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-Varying Magnetic Fields

S. Khushrushahi, A. Weddemann, Y. Kim, and M. Zahn
Massachusetts Institute of Technology
Cambridge, MA

Prior work has analyzed the case of planar Poiseuille ferrofluid flows in planar ducts stressed by uniform sinusoidally applied fields transverse and perpendicular to the duct axis. The coupled linear and angular momentum conservation equations with imposed magnetic flux density, Bx and magnetic field Hz result in a fourth-order system that was numerically solved using the shooting method in ...

Modeling Cavity Growth in Underground Coal Gasification

A. Sarraf Shirazi, J. Mmbaga, and R. Gupta
University of Alberta
Edmonton, AB
Canada

Underground coal gasification (UCG) has received renewed interest due to its potential for utilization of the vast amounts of coals available in deep underground seams and the current drive towards clean coal utilization. UCG process involves the reaction between air/steam and coal in deep underground seams to form a combustible gas which is brought to surface via a production well and used as a ...

Dynamic Simulation of Bone Morphogenetic Protein Patterning in a 3D Finite-Element Model of the Danio Rerio Embryo

D. Umulis, and S. Lee
Purdue University
West Lafayette, IN

Zebrafish development of the dorsoventral axis relies on the spatiotemporal distribution of Bone Morphogenetic Protein (BMP) signaling, which is regulated by numerous secreted molecules such as Tolloid, Sizzled, and Chordin. The rich dorsal/ventral patterning network must achieve both spatial precision in the patterning of downstream targets and confernspatial precision at distinct time points ...